Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Article in English | MEDLINE | ID: mdl-27377730

ABSTRACT

Impaired epithelial barrier function is a hallmark of inflammatory bowel diseases, such as colitis, contributing to diarrhoea and perpetuating inflammation. We show that the zinc sensing receptor, ZnR/GPR39, triggers intracellular Ca(2+) signalling in colonocytes thereby inducing occludin expression. Moreover, ZnR/GPR39 is essential for epithelial barrier recovery in the dextran sodium sulfate (DSS) ulcerative colitis model. Loss of ZnR/GPR39 results in increased susceptibility to DSS-induced inflammation, owing to low expression of the tight junction protein occludin and impaired epithelial barrier. Recovery of wild-type (WT) mice from the DSS insult was faster than that of ZnR/GPR39 knockout (KO) mice. Enhanced recovery of the epithelial layer and increased crypt regeneration were observed in WT mice compared with ZnR/GPR39 KO, suggesting that ZnR/GPR39 is promoting epithelial barrier integrity following DSS insult. Indeed, cell proliferation and apical expression of occludin, following the DSS-induced epithelial erosion, were increased in WT tissue but not in ZnR/GPR39 KO tissue. Importantly, survival following DSS treatment was higher in WT mice compared with ZnR/GPR39 KO mice. Our results support a direct role for ZnR/GPR39 in promoting epithelial renewal and barrier function following DSS treatment, thereby affecting the severity of the disease. We suggest ZnR/GPR39 as a novel therapeutic target that can improve epithelial barrier function in colitis.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'.


Subject(s)
Calcium Signaling , Colitis, Ulcerative/metabolism , Gene Expression , Occludin/genetics , Receptors, G-Protein-Coupled/genetics , Animals , Dextran Sulfate/pharmacology , Mice, Knockout , Occludin/metabolism , Receptors, G-Protein-Coupled/metabolism
3.
J Diabetes Sci Technol ; 8(6): 1193-203, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25155845

ABSTRACT

Utilizing endogenous molecules as a therapeutic approach is almost unequivocally superior to engineered or synthetic molecules. However, one rarely encounters an anti-inflammatory, cytoprotective, immunomodulatory and wound-healing molecule that has been available for use for decades. α1-antitrypsin (AAT), a circulating protein that rises more than 4-fold during acute-phase responses, has been administered for a rare genetic deficiency at large doses, for life. Aside from advances in insulin therapy, medical research in type 1 diabetes (T1D) has predominantly focused on autoimmunity--controlling the adaptive immune response. However, it is now appreciated that one may need to extend therapeutic targets to incorporate immune responses to cellular injury, as well as promote selective control over excessive inflammation and early tissue repair. Recent data suggest that tissue damage related to lung and renal ischemia-reperfusion injury, stroke, and ischemic heart disease is markedly reduced by AAT. AAT was also shown to protect pancreatic islet ß cells at multiple levels. Unlike classic immunosuppressive and anti-inflammatory approaches, AAT exerts some antiviral and antibacterial activities. Based on these and other reports, AAT is under evaluation for treatment of T1D patients in multiple clinical trials. Initial results suggest that AAT therapy could potentially improve insulin production without adverse effects. Up to 50% of individuals displayed improved islet function. It is a rare occurrence in T1D research that a therapy is offered that holds a safety profile equal or superior to that of insulin alone. While placebo-controlled trials are ongoing, the mechanism(s) behind these favorable activities of AAT are still being explored.


Subject(s)
Diabetes Mellitus, Type 1/drug therapy , alpha 1-Antitrypsin/pharmacology , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...