Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Pharm Nanotechnol ; 11(5): 486-492, 2023.
Article in English | MEDLINE | ID: mdl-37151072

ABSTRACT

BACKGROUND: Iron carbohydrate complexes are colloidal dispersions made up of polynuclear Fe(III)-oxyhydroxide cores surrounded by a carbohydrate shell that stabilizes the complex in iron colloidal formulations. The current study provides an improved method that is precise, accurate, and linear for quantifying total iron in most Iron Carbohydrate Colloid Drug Products. METHODS: Redox iodometry with a potentiometric determination is used to evaluate total iron in intravenous formulations. The visual indicator approach is more prone to fluctuations at endpoint calculations. Hence, the voltage potential approach is widely accepted as it is more accurate and sensitive. It tracks the actual change in activity that coincides with the equivalence point that is finally considered an endpoint. The principle is based on the idea that ferric iron in formulation reduces to ferrous iron in the presence of the iodide, which oxidizes to iodine. The released iodine is titrated using sodium thiosulfate. RESULTS: The proposed method was precise, with %RSD (relative standard deviation) not more than 1. The method was linear between 80% and 120%, with a linear regression of 0.999. The percent recovery ranged from 98.20 to 99.98 for the concentration ranges of 80-120. The method's robustness was checked by various analysts using different reagent grades. CONCLUSION: The proposed potentiometric determination method was precise, accurate, linear, and sensitive. The method was successfully validated, and the total iron content determined for commercial batches agrees with the iron claim on the label. Therefore, this method can be adapted widely for total iron content determination in any Intravenous formulation currently available on the market. The proposed method is more accessible at the Quality Control facilities on an industrial scale.


Subject(s)
Iodine , Iron , Potentiometry , Oxidation-Reduction , Carbohydrates
2.
Curr Microbiol ; 79(5): 142, 2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35322302

ABSTRACT

Metal-binding proteins occur in the cytosol of most eubacteria. The hypothetical metal responsive protein MreA (PP-2969 gene; NreA) seems responsible for zinc, chromium, cadmium accumulation, and metal ion homeostasis. However, there is a lack of definitive evidence regarding the specific metal-binding sites of MreA protein. The present study aimed to identify putative metal-binding regions for MreA. In silico analysis revealed that amino acids C40, H65, and C69 (CHC region) seem critical for metal-protein interactions. We created site-directed mutants (SDM's) of MreA for interacted amino acids to validate in silico results. The differential scanning fluorimetry (DSF) and atomic absorption spectroscopy (AAS) showed that SDM strains of MreA protein curtailed metal accumulation compared to the wild types indicating C40, H65, and C69 amino acids are critical for metal binding. Thus, we report potential implications for MreA-bioengineered strains of Pseudomonas putida KT2440 for metal ion homeostasis by alleviating metal toxicity in the biological environment.


Subject(s)
Pseudomonas putida , Binding Sites , Cadmium/metabolism , Metals/metabolism , Pseudomonas putida/genetics , Pseudomonas putida/metabolism , Zinc/metabolism
3.
J Natl Cancer Inst ; 111(11): 1202-1215, 2019 11 01.
Article in English | MEDLINE | ID: mdl-30990221

ABSTRACT

BACKGROUND: Anti-tumorigenic vs pro-tumorigenic roles of estrogen receptor-beta (ESR2) in breast cancer remain unsettled. We investigated the potential of TP53 status to be a determinant of the bi-faceted role of ESR2 and associated therapeutic implications for triple negative breast cancer (TNBC). METHODS: ESR2-TP53 interaction was analyzed with multiple assays including the in situ proximity ligation assay. Transcriptional effects on TP53-target genes and cell proliferation in response to knocking down or overexpressing ESR2 were determined. Patient survival according to ESR2 expression levels and TP53 mutation status was analyzed in the basal-like TNBC subgroup in the Molecular Taxonomy of Breast Cancer International Consortium (n = 308) and Roswell Park Comprehensive Cancer Center (n = 46) patient cohorts by univariate Cox regression and log-rank test. All statistical tests are two-sided. RESULTS: ESR2 interaction with wild-type and mutant TP53 caused pro-proliferative and anti-proliferative effects, respectively. Depleting ESR2 in cells expressing wild-type TP53 resulted in increased expression of TP53-target genes CDKN1A (control group mean [SD] = 1 [0.13] vs ESR2 depletion group mean [SD] = 2.08 [0.24], P = .003) and BBC3 (control group mean [SD] = 1 [0.06] vs ESR2 depleted group mean [SD] = 1.92 [0.25], P = .003); however, expression of CDKN1A (control group mean [SD] = 1 [0.21] vs ESR2 depleted group mean [SD] = 0.56 [0.12], P = .02) and BBC3 (control group mean [SD] = 1 [0.03] vs ESR2 depleted group mean [SD] = 0.55 [0.09], P = .008) was decreased in cells expressing mutant TP53. Overexpressing ESR2 had opposite effects. Tamoxifen increased ESR2-mutant TP53 interaction, leading to reactivation of TP73 and apoptosis. High levels of ESR2 expression in mutant TP53-expressing basal-like tumors is associated with better prognosis (Molecular Taxonomy of Breast Cancer International Consortium cohort: log-rank P = .001; hazard ratio = 0.26, 95% confidence interval = 0.08 to 0.84, univariate Cox P = .02). CONCLUSIONS: TP53 status is a determinant of the functional duality of ESR2. Our study suggests that ESR2-mutant TP53 combination prognosticates survival in TNBC revealing a novel strategy to stratify TNBC for therapeutic intervention potentially by repurposing tamoxifen.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinogenesis/pathology , Estrogen Receptor beta/metabolism , Mutant Proteins/metabolism , Mutation , Triple Negative Breast Neoplasms/pathology , Tumor Suppressor Protein p53/metabolism , Biomarkers, Tumor/genetics , Carcinogenesis/genetics , Carcinogenesis/metabolism , Cell Proliferation , Cohort Studies , Estrogen Receptor beta/genetics , Female , Humans , Mutant Proteins/genetics , Prognosis , Survival Rate , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Tumor Cells, Cultured , Tumor Suppressor Protein p53/genetics
4.
J Neurochem ; 118(2): 176-86, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21554319

ABSTRACT

ß-N-Oxalyl-L-α,ß-diaminopropionic acid (l-ODAP) an α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor agonist activates protein kinase C in white leghorn chick brain. The current study focuses on the protein kinase C downstream signaling targets associated with L-ODAP excitotoxicity in SK-N-MC human neuroblastoma cells and white leghorn male chick (Gallus domesticus) brain extracts. L-ODAP treatment in SK-N-MC cells (1.5 mM) and chicks (0.5 mg/g body weight) results in a decreased expression and increased phosphorylation of phosphatidylehthanolamine-binding protein 1 (PEBP1) up to 4 h which however, returns to normal by 8 h. D-ODAP, the non-toxic enantiomer however, did not affect PEBP1 levels in either chick brain or SK-N-MC cells. Decreased PEBP1 expression correlated with subsequent activation of Raf-1, MEK and ERK signaling components of the mitogen-activated protein kinase cascade and nuclear translocation of hypoxia inducible factor-1α (HIF-1α) in chick brain nuclear extracts and SK-N-MC cells. SK-N-MC cells over-expressing PEBP1 inhibited nuclear translocation of HIF-1α when treated with l-ODAP, indicating that down-regulation of PEBP1 is responsible for HIF-1α stabilization and nuclear localization. Excitotoxicity of L-ODAP may thus be the result of phosphorylation and down-regulation of PEBP1, a crucial signaling protein regulating diverse signaling cascades. L-ODAP induced convulsions and seizures in chicks could be the result of a hypoxic insult to brain.


Subject(s)
Amino Acids, Diamino/physiology , Down-Regulation/physiology , MAP Kinase Signaling System/physiology , Mitogen-Activated Protein Kinases/physiology , Phosphatidylethanolamine Binding Protein/antagonists & inhibitors , Phosphatidylethanolamine Binding Protein/metabolism , Animals , Cell Line, Tumor , Chickens , Humans , MAP Kinase Signaling System/drug effects , Male , Rats
5.
PLoS One ; 6(12): e29466, 2011.
Article in English | MEDLINE | ID: mdl-22216287

ABSTRACT

Noxa is a Bcl-2-homology domain (BH3)-only protein reported to be a proapoptotic member of the Bcl-2 family. Estrogen has been well documented to stimulate cell growth and inhibit apoptosis in estrogen receptor (ER)-positive breast cancer cells. Intriguingly, recent reports have shown that 17ß-estradiol (E2) induces Noxa expression, although the mechanisms underlying E2-mediated induction of Noxa and its functional significance are unknown. Using MCF7 human breast cancer cells as an experimental model, we show that Noxa is upregulated by E2 via p53-independent processes that involve c-Myc and ERα. Experiments using small interfering ribonucleic acids (siRNA) to specifically knock down p53, c-Myc, and ERα demonstrated that c-Myc and ERα, but not p53, are involved in the transcriptional upregulation of Noxa following E2 treatment. Furthermore, while E2 promoted the recruitment of c-Myc and ERα to the NOXA promoter in chromatin immunoprecipitation (ChIP) assays, E2 did not induce p53 recruitment. Interestingly, E2-mediated upregulation of Noxa was not associated with apoptosis. However, siRNA-mediated knockdown of Noxa resulted in cell cycle arrest in G(0)/G(1)-phase and significantly delayed the G(1)-to-S-phase transition following E2 treatment, indicating that Noxa expression is required for cell cycle progression in ER-positive breast cancer cells.


Subject(s)
Breast Neoplasms/pathology , Cell Cycle/physiology , Estrogen Receptor alpha/metabolism , Estrogens/physiology , Proto-Oncogene Proteins c-bcl-2/physiology , Up-Regulation/physiology , Breast Neoplasms/metabolism , Cell Line, Tumor , Humans , Proto-Oncogene Proteins c-bcl-2/genetics , Transcription, Genetic
6.
Proc Natl Acad Sci U S A ; 107(34): 15081-6, 2010 Aug 24.
Article in English | MEDLINE | ID: mdl-20696891

ABSTRACT

Estrogen receptor alpha (ERalpha) plays an important role in the onset and progression of breast cancer, whereas p53 functions as a major tumor suppressor. We previously reported that ERalpha binds to p53, resulting in inhibition of transcriptional regulation by p53. Here, we report on the molecular mechanisms by which ERalpha suppresses p53's transactivation function. Sequential ChIP assays demonstrated that ERalpha represses p53-mediated transcriptional activation in human breast cancer cells by recruiting nuclear receptor corepressors (NCoR and SMRT) and histone deacetylase 1 (HDAC1). RNAi-mediated down-regulation of NCoR resulted in increased endogenous expression of the cyclin-dependent kinase (CDK)-inhibitor p21(Waf1/Cip1) (CDKN1A) gene, a prototypic transcriptional target of p53. While 17beta-estradiol (E2) enhanced ERalpha binding to p53 and inhibited p21 transcription, antiestrogens decreased ERalpha recruitment and induced transcription. The effects of estrogen and antiestrogens on p21 transcription were diametrically opposite to their known effects on the conventional ERE-containing ERalpha target gene, pS2/TFF1. These results suggest that ERalpha uses dual strategies to promote abnormal cellular proliferation: enhancing the transcription of ERE-containing proproliferative genes and repressing the transcription of p53-responsive antiproliferative genes. Importantly, ERalpha binds to p53 and inhibits transcriptional activation by p53 in stem/progenitor cell-containing murine mammospheres, suggesting a potential role for the ER-p53 interaction in mammary tissue homeostasis and cancer formation. Furthermore, retrospective studies analyzing response to tamoxifen therapy in a subset of patients with ER-positive breast cancer expressing either wild-type or mutant p53 suggest that the presence of wild-type p53 is an important determinant of positive therapeutic response.


Subject(s)
Breast Neoplasms/metabolism , Estrogen Receptor alpha/metabolism , Tumor Suppressor Protein p53/antagonists & inhibitors , Animals , Base Sequence , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p21/genetics , DNA Primers/genetics , Estradiol/pharmacology , Estrogen Receptor Modulators/pharmacology , Female , Genes, p53 , Histone Deacetylase 1/metabolism , Humans , Mice , Mice, Inbred C57BL , Models, Biological , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutation , Neoplastic Stem Cells/metabolism , Promoter Regions, Genetic , Tamoxifen/pharmacology , Transcriptional Activation , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
7.
J Mol Neurosci ; 41(1): 36-47, 2010 May.
Article in English | MEDLINE | ID: mdl-19705086

ABSTRACT

In order to understand dementia and other ailments associated with high altitude hypoxia, adult Sprague Dawley male rats were exposed to simulated conditions of high altitude (7,500 m above sea level, 59 mmHg) for a period of 5 days and analyzed for changes in neuronal proteome by 2-D sodium dodecyl sulfate polyacrylamide gel electrophoresis. Protein extracts obtained from the brain cortex and hippocampus of the hypoxic rats were separated by 2-D gel electrophoresis. Differentially expressed proteins (analysis by 2-D gel analysis software, Bio-2D, Vilber-Lourmat, France and Delta2d, Decodon, Germany) were subjected to matrix-assisted laser desorption/ionization time-of-flight analysis. Among the proteins identified, the spot corresponding to pI 5.4 and molecular weight 21 kDa, identified as phosphatidylethanolamine binding protein (PEBP1), was consistently lowered (54%) in hypoxic cortex samples. PEBP1, also known as Raf kinase inhibitor protein, is a precursor of hippocampus cholinergic neurostimulatory peptide (HCNP). Western blot analysis revealed elevated phospho-extracellular signal-regulated kinase in hypoxic rat cortex samples, indicating activation of Raf/mitogen-activated protein kinase pathway under hypoxia. Lowered HCNP levels leading to 23% decrease in choline acetyltransferase and 63% increase in acetylcholinesterase activity were detected in hypoxic rat brain cortex, while no significant change was noted in hippocampus. Since PEBP1 is lowered in a number of neurological disorders associated with dementia, we speculate that lowered expression of PEBP1 might be responsible for dementia associated with high-altitude hypoxia. Further studies targeting PEBP1 might give clues about signaling pathways associated with hypoxia and dementia.


Subject(s)
Cerebral Cortex/metabolism , Hippocampus/metabolism , Hypoxia/metabolism , Phosphatidylethanolamine Binding Protein/metabolism , Acetylcholinesterase/metabolism , Amino Acid Sequence , Animals , Choline O-Acetyltransferase/metabolism , Down-Regulation , Electrophoresis, Gel, Two-Dimensional , Extracellular Signal-Regulated MAP Kinases/metabolism , Male , Mass Spectrometry/methods , Molecular Sequence Data , Neuropeptides/metabolism , Phosphatidylethanolamine Binding Protein/genetics , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...