Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 17278, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37828106

ABSTRACT

The influence of the addition of Bi to the dilute ferromagnetic semiconductor (Ga,Mn)As on its electronic structure as well as on its magnetic and structural properties has been studied. Epitaxial (Ga,Mn)(Bi,As) layers of high structural perfection have been grown using low-temperature molecular-beam epitaxy. Post-growth annealing of the samples improves their structural and magnetic properties and increases the hole concentration in the layers. Hard X-ray angle-resolved photoemission spectroscopy reveals a strongly dispersing band in the Mn-doped layers, which crosses the Fermi energy and is caused by the high concentration of Mn-induced itinerant holes located in the valence band. An increased density of states near the Fermi level is attributed to additional localized Mn states. In addition to a decrease in the chemical potential with increasing Mn doping, we find significant changes in the valence band caused by the incorporation of a small atomic fraction of Bi atoms. The spin-orbit split-off band is shifted to higher binding energies, which is inconsistent with the impurity band model of the band structure in (Ga,Mn)As. Spectroscopic ellipsometry and modulation photoreflectance spectroscopy results confirm the valence band modifications in the investigated layers.

2.
J Phys Condens Matter ; 33(23)2021 May 13.
Article in English | MEDLINE | ID: mdl-33647896

ABSTRACT

Hard x-ray photoelectron spectroscopy (HAXPES) is establishing itself as an essential technique for the characterisation of materials. The number of specialised photoelectron spectroscopy techniques making use of hard x-rays is steadily increasing and ever more complex experimental designs enable truly transformative insights into the chemical, electronic, magnetic, and structural nature of materials. This paper begins with a short historic perspective of HAXPES and spans from developments in the early days of photoelectron spectroscopy to provide an understanding of the origin and initial development of the technique to state-of-the-art instrumentation and experimental capabilities. The main motivation for and focus of this paper is to provide a picture of the technique in 2020, including a detailed overview of available experimental systems worldwide and insights into a range of specific measurement modi and approaches. We also aim to provide a glimpse into the future of the technique including possible developments and opportunities.

3.
J Phys Condens Matter ; 32(13): 135501, 2020 Mar 27.
Article in English | MEDLINE | ID: mdl-31796649

ABSTRACT

A Feynman diagram analysis of photoemission probabilities suggests a relation between two final-state spin polarization effects, the optical spin-orientation originating from the interaction with circularly polarized light ([Formula: see text], Fano effect) and the spin polarization induced by the spin-orbit scattering ([Formula: see text], Mott effect). The analysis predicts that [Formula: see text] is proportional to the product of [Formula: see text] and the circular dichroism in the angular distribution (CDAD) of photoelectrons. To confirm this prediction, the spin polarization of photoelectrons excited by soft x-ray radiation from initial spin-degenerate bulk states of tungsten using time-of-flight momentum microscopy with parallel spin detection has been measured. By measurement of four independent photoemission intensities for two opposite spin directions and opposite photon helicity, CDAD, Fano, and Mott effect are distinguished. The results confirm the prediction from the Feynman diagram analysis.

4.
Ultramicroscopy ; 130: 70-6, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23561302

ABSTRACT

Using a photoelectron emission microscope (PEEM), we demonstrate spin-resolved electron spectroscopic imaging of ultrathin magnetic Co films grown on Cu(100). The spin-filter, based on the spin-dependent reflection of low energy electrons from a W(100) crystal, is attached to an aberration corrected electrostatic energy analyzer coupled to an electrostatic PEEM column. We present a method for the quantitative measurement of the electron spin polarization at 4 × 10³ points of the PEEM image, simultaneously. This approach uses the subsequent acquisition of two images with different scattering energies of the electrons at the W(100) target to directly derive the spin polarization without the need of magnetization reversal of the sample.

5.
J Am Chem Soc ; 134(10): 4694-9, 2012 Mar 14.
Article in English | MEDLINE | ID: mdl-22321020

ABSTRACT

It is demonstrated that the near-edge X-ray absorption fine structure (NEXAFS) provides a powerful local probe of functional groups in novel charge transfer (CT) compounds and their electronic properties. Microcrystals of tetra-/hexamethoxypyrene as donors with the strong acceptor tetracyano-p-quinodimethane (TMP/HMP-TCNQ) were grown by vapor diffusion. The oxygen and nitrogen K-edge spectra are spectroscopic fingerprints of the functional groups in the donor and acceptor moieties, respectively. The orbital selectivity of the NEXAFS pre-edge resonances allows us to precisely elucidate the participation of specific orbitals in the charge transfer process. Upon complex formation, the intensities of several resonances change substantially and a new resonance occurs in the oxygen K-edge spectrum. This gives evidence of a corresponding change of hybridization of specific orbitals in the functional groups of the donor (those derived from the frontier orbitals 2e and 6a(1) of the isolated methoxy group) and acceptor (orbitals b(3g), a(u), b(1g), and b(2u), all located at the cyano group) with π*-orbitals of the ring systems. Along with this intensity effect, the resonance positions associated with the oxygen K-edge (donor) and nitrogen K-edge (acceptor) shift to higher and lower photon energies in the complex, respectively. A calculation based on density functional theory qualitatively explains the experimental results. NEXAFS measurements shine light on the action of the functional groups and elucidate charge transfer on a submolecular level.

SELECTION OF CITATIONS
SEARCH DETAIL
...