Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Planta Med ; 81(15): 1339-44, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25856439

ABSTRACT

A multitude of sooty blotch and flyspeck fungi, mainly belonging to the Ascomycetes order Capnodiales, causes dark blemishes and flyspeck-like spots on apples worldwide. Different sooty blotch and flyspeck fungi can coexist in the same orchard and even on a single fruit. Our preceding experiments revealed an activity of Microcyclospora malicola strain 1930 against the anthracnose fungus Colletotrichum fioriniae in dual culture assays. Extracts of M. malicola strain 1930 showed a broad bioactivity against filamentous fungus Mucor hiemalis and gram-positive bacterium Bacillus subtilis. A bioactivity-guided isolation led to the identification of obionin A (1) as the main active principle. In addition to 1, which was previously isolated from the marine fungus Leptosphaeria obiones, we isolated three derivatives. Metabolite 2 bears a keto function at C-6, besides the replacement of oxygen by nitrogen at position 10. Two more derivatives are adducts (3, 4) of acetone as work-up artifacts. Because obionin A (1) and its derivative 2 showed cytotoxic effects and antifungal activities, we propose a role of these secondary metabolites in the antagonism between M. malicola and other apple colonizing sooty blotch and flyspeck fungi, other epiphytes, or apple pathogens competing for the same ecological niche.


Subject(s)
Anti-Infective Agents/isolation & purification , Ascomycota/chemistry , Benzopyrans/metabolism , Naphthoquinones/metabolism , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Antifungal Agents/pharmacology , Drug Screening Assays, Antitumor , Malus/microbiology
2.
Mycologia ; 106(3): 525-36, 2014.
Article in English | MEDLINE | ID: mdl-24871591

ABSTRACT

Adopting the currently used concept for the genus Peltaster, the sooty blotch fungus Peltaster cerophilus is newly described from the cuticle of ripening or ripe apples. It forms a punctate phenotype consisting of superficially formed pycnothyria and a superficial mycelial mat consisting of a net of brown or brownish black hyphae. The pycnothyria are olivaceous brown to brown but have a spot in the center that is less strongly pigmented. Pycnothyria on the holotype of P. fructicola are homogeneously pigmented. On synthetic nutrient-poor agar, P. cerophilus is largely indistinguishable from P. fructicola. It forms delicate, spreading hyphae and intercalary conidiogenous cells with short, lateral, apically thick-walled conidiogenous necks forming blastic, unpigmented, one-celled conidia in basipetal succession. Conidia can swell and become one-septate. The species has microcyclical conidiation in proximate parts of colonies. DNA sequence analyses based on the ITS and the partial nuclear small and large subunit ribosomal RNA genes, the partial mitochondrial small subunit rRNA gene and the partial translation elongation factor 1-α gene support the distinction of the European P. cerophilus from P. fructicola, which is known from North America and Europe. The nuclear small ribosomal RNA subunit gene sequences of P. cerophilus contain two group I introns at locations known to accommodate introns in certain other, unrelated taxa. One of these, for which the code "SSU-1506 intron" was adopted, is 1459 base pairs long and located between the universal primer sites ITS5 and ITS1. Similar or positional-differing introns were encountered also in three currently undescribed Peltaster species. Representative strains of Peltaster fructicola did not accommodate introns in the nuclear small subunit ribosomal RNA gene.


Subject(s)
Ascomycota/classification , Ascomycota/isolation & purification , Malus/microbiology , Plant Diseases/microbiology , Ascomycota/genetics , DNA, Fungal/genetics , DNA, Ribosomal/genetics , Molecular Sequence Data , Phylogeny
3.
J Agric Food Chem ; 62(16): 3525-30, 2014 Apr 23.
Article in English | MEDLINE | ID: mdl-24697667

ABSTRACT

The sooty blotch and flyspeck (SBFS) syndrome of apples and other fruits is caused by a complex consortium of epiphytic fungi that colonize the fruit cuticula. SBFS fungal strains isolated from apples were screened for growth inhibition of the phytopathogen Colletotrichum fioriniae in dual culture tests. Extracts of 11 isolates of SBFS fungi (Microcyclospora malicola, Microcyclospora pomicola, Microcyclospora tardicrescens, and Microcyclosporella mali) inhibited growth of the test strains and were studied for production of antibiotics. A strain of Microcyclospora tardicrescens strongly inhibited growth and was cultivated on a larger scale to characterize its secondary metabolites. Bioassay-guided fractionation and subsequent structure elucidation by spectroscopic and spectrometric methods (NMR, HRMS) yielded trichothecolone acetate (1) and its novel derivative (S)-7-hydroxytrichothecolone acetate (2) as active principles. Microcyclospora tardicrescens was thus identified as a producer of the hazardous trichothecene type mycotoxins for the first time, which should give reason to monitor these foodborne fungi more carefully in the future.


Subject(s)
Ascomycota/metabolism , Malus/microbiology , Mycotoxins/biosynthesis , Plant Diseases/microbiology , Trichothecenes/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...