Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 858(Pt 3): 159976, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36347295

ABSTRACT

Plastic waste pollution is considered one of the biggest problems facing our planet. The production and use of these materials has led to huge amounts of plastic waste entering the aquatic environment and affecting aquatic life. In our experiment, the effect of polystyrene microparticles (PS-MPs; 52.5 ± 11.5 µm) on individual juvenile rainbow trout (Oncorhynchus mykiss) was tested at three different dietary concentrations of 0.5, 2 and 5 % for six weeks. At the end of the experiment, various health parameters of exposed organisms were compared with the control group. The haematological profile revealed an immune response by a decrease in lymphocyte count with a concurrent increase in the number of neutrophil segments at the highest concentration of PS-MPs (5 %). Biochemical analysis showed significant reductions in plasma ammonia in all tested groups, which may be related to liver and gill damage, as determined by histopathological examination and analysis of inflammatory cytokines expression. In addition, liver damage can also cause a significant decrease in the plasma protein ceruloplasmin, which is synthesized in the liver. PS-MPs disrupted the antioxidant balance in the caudal kidney, gill and liver, with significant changes observed only at the highest concentration. In summary, PS-MPs negatively affect the health status of freshwater fish and represent a huge burden on aquatic ecosystems.


Subject(s)
Microplastics , Polystyrenes , Microplastics/toxicity , Polystyrenes/toxicity , Plastics/toxicity , Ecosystem , Health Status
2.
Physiol Res ; 69(Suppl 4): S619-S625, 2020 Dec 31.
Article in English | MEDLINE | ID: mdl-33656907

ABSTRACT

The growing consumption of pharmaceuticals in the human population and the insufficient efficiency of their elimination in waste water has a long-term negative impact on the environment of aquatic ecosystems, including the organisms that inhabit them. A significant contributor is the consumption of anti-depressants from the SSRI group, which corresponds to their increasing concentration in the environment. The aim of this work was to determine if antidepressant sertraline is able to be stored in fish organisms and to evaluate the content of residues in various body tissues. Rainbow trout (Oncorhynchuss mykkis) was selected as the test organism and was artificially exposed to the antidepressant for 1 month (concentrations 0; 4.2; 44 and 400 ng.g-1 sertraline in the feed). Liver, kidney, brain and muscle tissue biopsies samples were taken for analysis. Detection was performed using an Accela 1250 LC pump and an Accela autosampler coupled with a high-performance mass analyzer with a heated electrospray ionization source Q-Exactive Orbitrap, operating in positive ionization mode and in PRM mode (m/z 306.08108->275.03888 and 309.009991->275.03888 for sertraline and internal standard, respectively). The limit of quantification of the method was 0.1 ng.g-1 of sertraline and the calibration curve showed a good linearity up to 20 ng.g-1. From the collected data, amount of residues was found in the liver, kidney and brain. In contrast, the incidence of residues in muscle tissue was not detected in all groups, which is favorable from the point of view of fish meat consumption, by humans.


Subject(s)
Drug Residues/analysis , Oncorhynchus mykiss/metabolism , Selective Serotonin Reuptake Inhibitors/analysis , Sertraline/analysis , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Water Pollutants, Chemical/analysis , Animals , Body Burden , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...