Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38032342

ABSTRACT

In this work, we report a novel multimetallic nanoparticle catalyst composed of Pt, Pd, and Pb and its electrochemical activity toward dimethyl ether (DME) oxidation in liquid electrolyte and polymer electrolyte fuel cells. Chemical dealloying of the catalyst with the lowest platinum-group metal (PGM) content, Pt2PdPb2/C, was conducted using HNO3 to tune the catalyst activity. Comprehensive characterization of the chemical-dealloying-derived catalyst nanoparticles unambiguously showed that the acid treatment removed 50% Pb from the nanoparticles with an insignificant effect on the PGM metals and led to the formation of smaller-sized nanoparticles. Electrochemical studies showed that Pb dissolution led to structural changes in the original catalysts. Chemical-dealloying-derived catalyst nanoparticles made of multiple phases (Pt, Pt3Pb, PtPb) provided one of the highest PGM-normalized power densities of 118 mW mgPGM-1 in a single direct DME fuel cell operated at low anode catalyst loading (1 mgPGM cm-2) at 70 °C. A possible DME oxidation pathway for these multimetallic catalysts was proposed based on an online mass spectrometry study and the analysis of the reaction products.

2.
Dalton Trans ; 51(36): 13831-13847, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36039852

ABSTRACT

In spite of advanced research on functional colloidal inorganic nanoparticles and their reactivity, room temperature reactive interactions between two different colloids have remained challenging so far. Laser ablation of titanium monoxide and silicon monoxide in ethanol and water allows the generation of TiO-derived and SiO-derived colloidal nanoparticles which were characterized for their stability, size distribution and zeta potentials with dynamic light scattering and after evaporation of solvent examined for their morphology, chemical and phase composition by scanning electron microscopy, Raman spectroscopy, high resolution transmission electron microscopy and electron diffraction and small angle X-ray scattering. Aqueous and ethanolic TiO-derived colloids consist of anatase and monoclinic TiO, while ethanolic SiO-derived colloids are composed of crystalline and amorphous Si, nanocrystalline Si and SiO2 and aqueous SiO-derived colloids contain, in addition to these phases, a high pressure form of cristobalite. Simple room temperature mixing of ethanolic TiO- and SiO-derived colloids allows the formation of TiSi2, which is a case of so far unreported room temperature reactive interactions between two colloidal species. All colloids absorb solar light and act as photocatalysts for methylene blue degradation. These findings present a challenge for further search for feasible room-temperature reactions between distinct colloidal particles and open the potential for green synthesis of other desirable and hardly achievable phases.

3.
Polymers (Basel) ; 13(9)2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33925200

ABSTRACT

In this work, advanced polymer nanocomposites comprising of polyvinyl alcohol (PVA) and nanodiamonds (NDs) were developed using a single-step solution-casting method. The properties of the prepared PVA/NDs nanocomposites were investigated using Raman spectroscopy, small- and wide-angle X-ray scattering (SAXS/WAXS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). It was revealed that the tensile strength improved dramatically with increasing ND content in the PVA matrix, suggesting a strong interaction between the NDs and the PVA. SEM, TEM, and SAXS showed that NDs were present in the form of agglomerates with an average size of ~60 nm with primary particles of diameter ~5 nm. These results showed that NDs could act as a good nanofiller for PVA in terms of improving its stability and mechanical properties.

4.
Dalton Trans ; 49(38): 13262-13275, 2020 Oct 06.
Article in English | MEDLINE | ID: mdl-32966468

ABSTRACT

A pulsed Nd : YAG laser ablation of FeS in water and ethanol produces FeS-derived colloidal nanoparticles that absorb onto immersed porous ceramic substrates and create solar-light photocatalytic surfaces. The stability, size distribution and zeta potential of the nanoparticles were assessed by dynamic light scattering. Raman, UV-Vis and XP spectroscopy and electron microscopy reveal that the sol nanoparticles have their outmost layer composed of ferrous and ferric sulphates and those produced in water are made of high-pressure orthorhombic FeS, cubic magnetite Fe3O4 and tetragonal maghemite γ-Fe2O3, while those formed in ethanol contain hexagonal FeS and cubic magnetite Fe3O4. Both colloids absorb solar light and their adsorption to porous ceramic surfaces creates functionalized ceramic surfaces that induce methylene blue degradation by daylight. The laser induced process thus offers an easy and efficient way for the functionalization of porous surfaces by photocatalytic nanoparticles that avoids aggregation in the liquid phase. The formation of an orthorhombic high-pressure FeS phase stable under ambient conditions is the first example of high-pressure structures produced by laser ablation in liquid without the assistance of an electric field.

5.
ACS Nano ; 12(1): 464-473, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29227684

ABSTRACT

Layered materials, like transition metal dichalcogenides, exhibit broad spectra with outstanding properties with huge application potential, whereas another group of related materials, layered transition metal trichalcogenides, remains unexplored. Here, we show the broad application potential of this interesting structural type of layered tantalum trisulfide prepared in a form of nanofibers. This material shows tailorable attractive electronic properties dependent on the tensile strain applied to it. Structure of this so-called orthorhombic phase of TaS3 grown in a form of long nanofibers has been solved and refined. Taking advantage of these capabilities, we demonstrate a highly specific impedimetric NO gas sensor based on TaS3 nanofibers as well as construction of photodetectors with excellent responsivity and field-effect transistors. Various flexible substrates were used for the construction of a NO gas sensor. Such a device exhibits a low limit of detection of 0.48 ppb, well under the allowed value set by environmental agencies for NOx (50 ppb). Moreover, this NO gas sensor also showed excellent selectivity in the presence of common interferences formed during fuel combustion. TaS3 nanofibers produced in large scale exhibited excellent broad application potential for various types of devices covering nanoelectronic, optoelectronic, and gas-sensing applications.

6.
J Mech Behav Biomed Mater ; 75: 252-261, 2017 11.
Article in English | MEDLINE | ID: mdl-28756286

ABSTRACT

Ti-35Nb-2Zr-0.5O (wt%) alloy was prepared via a powder metallurgy process (cold isostatic pressing of blended elemental powders and subsequent sintering) with the primary aim of using it as a material for bio-applications. Sintered specimens were swaged and subsequently the influence of annealing temperature on the mechanical and structural properties was studied. Specimens were annealed at 800, 850, 900, 950, and 1000°C for 0.5h and water quenched. Significant changes in microstructure (i.e. precipitate dissolution or grain coarsening) were observed in relation to increasing annealing temperature. In correlation with those changes, the mechanical properties were also studied. The ultimate tensile strength increased from 925MPa (specimen annealed at 800°C) to 990MPa (900°C). Also the elongation increased from ~ 13% (800°C) to more than 20% (900, 950, and 1000°C).


Subject(s)
Alloys/analysis , Materials Testing , Temperature , Metallurgy , Niobium , Powders , Tensile Strength , Titanium , Zirconium
7.
Nanoscale ; 8(4): 1960-7, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26538458

ABSTRACT

Bulk layered transition metal dichalcogenides (TMDs) show diamagnetic properties. When exfoliated, the materials' band gap increases and changes from an indirect band gap to a direct one. During the exfoliation, the TMDs may undergo a phase transition from 2H to 1T polymorph, which is likely electronically driven and accompanied by a metal-insulator transition. A significantly higher efficiency of the exfoliation was observed using sodium naphthalenide compared to butyllithium. Moreover we demonstrate that the exfoliation has a dramatic influence on the magnetic properties of two TMDs, MoS2 and WS2. These materials become partly ferromagnetic upon exfoliation, which is a highly unexpected behavior. Exotic ferromagnetism is generally observed on samples with a high degree of exfoliation, which indicates the association of this effect with defects formed on the edges of dichalcogenide sheets. Such an exotic ferromagnetic behavior, if properly understood and brought under material engineering control, shall open the door to new applications of these materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...