Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 702, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36639403

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal, neurodegenerative motor neuron disease. Although an early diagnosis is crucial to provide adequate care and improve survival, patients with ALS experience a significant diagnostic delay. This study aimed to use real-world data to describe the clinical profile and timing between symptom onset, diagnosis, and relevant outcomes in ALS. Retrospective and multicenter study in 5 representative hospitals and Primary Care services in the SESCAM Healthcare Network (Castilla-La Mancha, Spain). Using Natural Language Processing (NLP), the clinical information in electronic health records of all patients with ALS was extracted between January 2014 and December 2018. From a source population of all individuals attended in the participating hospitals, 250 ALS patients were identified (61.6% male, mean age 64.7 years). Of these, 64% had spinal and 36% bulbar ALS. For most defining symptoms, including dyspnea, dysarthria, dysphagia and fasciculations, the overall diagnostic delay from symptom onset was 11 (6-18) months. Prior to diagnosis, only 38.8% of patients had visited the neurologist. In a median post-diagnosis follow-up of 25 months, 52% underwent gastrostomy, 64% non-invasive ventilation, 16.4% tracheostomy, and 87.6% riluzole treatment; these were more commonly reported (all Ps < 0.05) and showed greater probability of occurrence (all Ps < 0.03) in bulbar ALS. Our results highlight the diagnostic delay in ALS and revealed differences in the clinical characteristics and occurrence of major disease-specific events across ALS subtypes. NLP holds great promise for its application in the wider context of rare neurological diseases.


Subject(s)
Amyotrophic Lateral Sclerosis , Humans , Male , Middle Aged , Female , Amyotrophic Lateral Sclerosis/therapy , Amyotrophic Lateral Sclerosis/drug therapy , Retrospective Studies , Artificial Intelligence , Delayed Diagnosis , Disease Progression
2.
J Pharm Policy Pract ; 15(1): 85, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36401303

ABSTRACT

Efforts in the pharmaceutical market have been aimed at ensuring that the benefits obtained from the introduction of new therapies justify the associated costs. In recent years, drug payment models in healthcare have undergone a dramatic shift from focusing on volume (i.e., size of the target clinical population) to focusing on value (i.e., drug performance in real-world settings). In this context, value-based contracts (VBCs) were designed to align the payment of a drug to its clinical performance outside clinical trials by evaluating the effectiveness using real-word evidence (RWE). Despite their widespread implementation, different factors jeopardize the application of VBCs to most marketed drugs in a near future, including the need for easily measurable and relevant outcomes associated with clinical improvements, and access to a large patient population to assess said outcomes. Here, we argue that the extraction and analysis of massive amounts of RWE captured in patients' electronic health records (EHRs) will circumvent these issues and optimize negotiations in VBCs. Particularly, the use of Natural Language Processing (NLP) has proven successful in the analysis of structured and unstructured clinical information in EHRs in multicenter research studies. Thus, the application of NLP to analyze patient-centered information in EHRs in the context of innovative contracting can be utterly beneficial as it enables the real-time evaluation of treatment response and financial impact in real-world settings.

3.
J Pharm Policy Pract ; 13(1): 75, 2020 Nov 09.
Article in English | MEDLINE | ID: mdl-33292570

ABSTRACT

The digitalization of health and medicine and the growing availability of electronic health records (EHRs) has encouraged healthcare professionals and clinical researchers to adopt cutting-edge methodologies in the realms of artificial intelligence (AI) and big data analytics to exploit existing large medical databases. In Hospital and Health System pharmacies, the application of natural language processing (NLP) and machine learning to access and analyze the unstructured, free-text information captured in millions of EHRs (e.g., medication safety, patients' medication history, adverse drug reactions, interactions, medication errors, therapeutic outcomes, and pharmacokinetic consultations) may become an essential tool to improve patient care and perform real-time evaluations of the efficacy, safety, and comparative effectiveness of available drugs. This approach has an enormous potential to support share-risk agreements and guide decision-making in pharmacy and therapeutics (P&T) Committees.

SELECTION OF CITATIONS
SEARCH DETAIL
...