Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Robot ; 39(3): 2170-2182, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37304231

ABSTRACT

Positive biomechanical outcomes have been reported with lower-limb exoskeletons in laboratory settings, but these devices have difficulty delivering appropriate assistance in synchrony with human gait as the task or rate of phase progression change in real-world environments. This paper presents a controller for an ankle exoskeleton that uses a data-driven kinematic model to continuously estimate the phase, phase rate, stride length, and ground incline states during locomotion, which enables the real-time adaptation of torque assistance to match human torques observed in a multi-activity database of 10 able-bodied subjects. We demonstrate in live experiments with a new cohort of 10 able-bodied participants that the controller yields phase estimates comparable to the state of the art, while also estimating task variables with similar accuracy to recent machine learning approaches. The implemented controller successfully adapts its assistance in response to changing phase and task variables, both during controlled treadmill trials (N=10, phase RMSE: 4.8 ± 2.4%) and a real-world stress test with extremely uneven terrain (N=1, phase RMSE: 4.8 ± 2.7%).

2.
IEEE Robot Autom Lett ; 7(3): 7463-7470, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35782346

ABSTRACT

Many exoskeletons today are primarily tested in controlled, steady-state laboratory conditions that are unrealistic representations of their real-world usage in which walking conditions (e.g., speed, slope, and stride length) change constantly. One potential solution is to detect these changing walking conditions online using Bayesian state estimation to deliver assistance that continuously adapts to the wearer's gait. This paper investigates such an approach in silico, aiming to understand 1) which of the various Bayesian filter assumptions best match the problem, and 2) which gait parameters can be feasibly estimated with different combinations of sensors available to different exoskeleton configurations (pelvis, thigh, shank, and/or foot). Our results suggest that the assumptions of the Extended Kalman Filter are well suited to accurately estimate phase, stride frequency, stride length, and ramp inclination with a wide variety of sparse sensor configurations.

3.
J Neuroeng Rehabil ; 19(1): 26, 2022 02 26.
Article in English | MEDLINE | ID: mdl-35219335

ABSTRACT

BACKGROUND: The purpose of augmentative exoskeletons is to help people exceed the limitations of their human bodies, but this cannot be realized unless people choose to use these exciting technologies. Although human walking efficiency has been highly optimized over generations, exoskeletons have been able to consistently improve this efficiency by 10-15%. However, despite these measurable improvements, exoskeletons today remain confined to the laboratory. To achieve widespread adoption, exoskeletons must not only exceed the efficiency of human walking, but also provide a perceivable benefit to their wearers. METHODS: In this study, we quantify the perceptual threshold of the metabolic efficiency benefit provided during exoskeleton-assisted locomotion. Ten participants wore bilateral ankle exoskeletons during continuous walking. The assistance provided by the exoskeletons was varied in 2 min intervals while participants provided feedback on their metabolic rate. These data were aggregated and used to estimate the perceptual threshold. RESULTS: Participants were able to detect a change in their metabolic rate of 22.7% (SD: 17.0%) with 75% accuracy. This indicates that in the short term and on average, wearers cannot yet reliably perceive the metabolic benefits of today's augmentative exoskeletons. CONCLUSIONS: If wearers cannot perceive the benefits provided by these technologies, it will negatively affect their impact, including long-term adoption and product viability. Future exoskeleton researchers and designers can use these methods and results to inform the development of exoskeletons that reach their potential.


Subject(s)
Exoskeleton Device , Ankle , Ankle Joint , Biomechanical Phenomena , Humans , Walking
SELECTION OF CITATIONS
SEARCH DETAIL
...