Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 122(15): 153901, 2019 Apr 19.
Article in English | MEDLINE | ID: mdl-31050515

ABSTRACT

Using the cubic Ginzburg-Landau equation as an example, we demonstrate how the inverse scattering transform can be applied to characterize coherent structures in dissipative nonlinear systems. Using this approach one can reduce the number of the effective degrees of freedom in the system when the dynamic is dominated by the coherent structures, even if they are embedded in the dispersive waves and demonstrate unstable behavior.

2.
Opt Express ; 25(1): 223-231, 2017 Jan 09.
Article in English | MEDLINE | ID: mdl-28085815

ABSTRACT

Visualisation of complex nonlinear equation solutions is a useful analysis tool for various scientific and engineering applications. We have re-examined the geometrical interpretation of the classical nonlinear four-wave mixing equations for the specific scheme of a phase sensitive one-pump fiber optical parametric amplification, which has recently attracted revived interest in the optical communications due to potential low noise properties of such amplifiers. Analysis of the phase portraits of the corresponding dynamical systems provide valuable additional insight into field dynamics and properties of the amplifiers. Simple geometric approach has been proposed to describe evolution of the waves, involved in phase-sensitive fiber optical parametric amplification (PS-FOPA) process, using a Hamiltonian structure of the governing equations. We have demonstrated how the proposed approach can be applied to the optimization problems arising in the design of the specific PS-FOPA scheme. The method considered here is rather general and can be used in various applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...