Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
J Pers Med ; 14(6)2024 May 21.
Article in English | MEDLINE | ID: mdl-38929770

ABSTRACT

In 2022, there was an estimated incidence of 20 million cancer cases and 9 [...].

2.
Clin Cancer Res ; 28(16): 3618-3629, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35653148

ABSTRACT

PURPOSE: Endocrine therapy resistance (ETR) remains the greatest challenge in treating patients with hormone receptor-positive breast cancer. We set out to identify molecular mechanisms underlying ETR through in-depth genomic analysis of breast tumors. EXPERIMENTAL DESIGN: We collected pre-treatment and sequential on-treatment tumor samples from 35 patients with estrogen receptor-positive breast cancer treated with neoadjuvant then adjuvant endocrine therapy; 3 had intrinsic resistance, 19 acquired resistance, and 13 remained sensitive. Response was determined by changes in tumor volume neoadjuvantly and by monitoring for adjuvant recurrence. Twelve patients received two or more lines of endocrine therapy, with subsequent treatment lines being initiated at the time of development of resistance to the previous endocrine therapy. DNA whole-exome sequencing and RNA sequencing were performed on all samples, totalling 169 unique specimens. DNA mutations, copy-number alterations, and gene expression data were analyzed through unsupervised and supervised analyses to identify molecular features related to ETR. RESULTS: Mutations enriched in ETR included ESR1 and GATA3. The known ESR1 D538G variant conferring ETR was identified, as was a rarer E380Q variant that confers endocrine hypersensitivity. Resistant tumors which acquired resistance had distinct gene expression profiles compared with paired sensitive tumors, showing elevated pathways including ER, HER2, GATA3, AKT, RAS, and p63 signaling. Integrated analysis in individual patients highlighted the diversity of ETR mechanisms. CONCLUSIONS: The mechanisms underlying ETR are multiple and characterized by diverse changes in both somatic genetic and transcriptomic profiles; to overcome resistance will require an individualized approach utilizing genomic and genetic biomarkers and drugs tailored to each patient.


Subject(s)
Breast Neoplasms , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , DNA , Drug Resistance, Neoplasm/genetics , Estrogen Receptor alpha/genetics , Female , Humans , Receptors, Estrogen/genetics , Sequence Analysis, RNA , Exome Sequencing
3.
J Pers Med ; 12(4)2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35455701

ABSTRACT

While the term biomarker is thought to have first been used in the 1970s, the concept itself is considered to be much older [...].

4.
J Pers Med ; 11(11)2021 Oct 24.
Article in English | MEDLINE | ID: mdl-34834425

ABSTRACT

IL6-like cytokines are a family of regulators with a complex, pleiotropic role in both the healthy organism, where they regulate immunity and homeostasis, and in different diseases, including cancer. Here we summarise how these cytokines exert their effect through the shared signal transducer IL6ST (gp130) and we review the extensive evidence on the role that different members of this family play in breast cancer. Additionally, we discuss how the different cytokines, their related receptors and downstream effectors, as well as specific polymorphisms in these molecules, can serve as predictive or prognostic biomarkers with the potential for clinical application in breast cancer. Lastly, we also discuss how our increasing understanding of this complex signalling axis presents promising opportunities for the development or repurposing of therapeutic strategies against cancer and, specifically, breast neoplasms.

5.
J Pers Med ; 11(7)2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34357131

ABSTRACT

Worldwide, prostate cancer (PC) is the second-most-frequently diagnosed male cancer and the fifth-most-common cause of all cancer-related deaths. Suspicion of PC in a patient is largely based upon clinical signs and the use of prostate-specific antigen (PSA) levels. Although PSA levels have been criticised for a lack of specificity, leading to PC over-diagnosis, it is still the most commonly used biomarker in PC management. Unfortunately, PC is extremely heterogeneous, and it can be difficult to stratify patients whose tumours are unlikely to progress from those that are aggressive and require treatment intensification. Although PC-specific biomarker research has previously focused on disease diagnosis, there is an unmet clinical need for novel prognostic, predictive and treatment response biomarkers that can be used to provide a precision medicine approach to PC management. In particular, the identification of biomarkers at the time of screening/diagnosis that can provide an indication of disease aggressiveness is perhaps the greatest current unmet clinical need in PC management. Largely through advances in genomic and proteomic techniques, exciting pre-clinical and clinical research is continuing to identify potential tissue, blood and urine-based PC-specific biomarkers that may in the future supplement or replace current standard practices. In this review, we describe how PC-specific biomarker research is progressing, including the evolution of PSA-based tests and those novel assays that have gained clinical approval. We also describe alternative diagnostic biomarkers to PSA, in addition to biomarkers that can predict PC aggressiveness and biomarkers that can predict response to certain therapies. We believe that novel biomarker research has the potential to make significant improvements to the clinical management of this disease in the near future.

6.
J Pers Med ; 11(8)2021 Aug 14.
Article in English | MEDLINE | ID: mdl-34442440

ABSTRACT

Radiotherapy (RT) is an important treatment modality for the local control of breast cancer (BC). Unfortunately, not all patients that receive RT will obtain a therapeutic benefit, as cancer cells that either possess intrinsic radioresistance or develop resistance during treatment can reduce its efficacy. For RT treatment regimens to become personalised, there is a need to identify biomarkers that can predict and/or monitor a tumour's response to radiation. Here we describe a novel method to identify such biomarkers. Liquid chromatography-mass spectrometry (LC-MS) was used on conditioned media (CM) samples from a radiosensitive oestrogen receptor positive (ER+) BC cell line (MCF-7) to identify cancer-secreted biomarkers which reflected a response to radiation. A total of 33 radiation-induced secreted proteins that had higher (up to 12-fold) secretion levels at 24 h post-2 Gy radiation were identified. Secretomic results were combined with whole-transcriptome gene expression experiments, using both radiosensitive and radioresistant cells, to identify a signature related to intrinsic radiosensitivity. Gene expression analysis assessing the levels of the 33 proteins showed that 5 (YBX3, EIF4EBP2, DKK1, GNPNAT1 and TK1) had higher expression levels in the radiosensitive cells compared to their radioresistant derivatives; 3 of these proteins (DKK1, GNPNAT1 and TK1) underwent in-lab and initial clinical validation. Western blot analysis using CM samples from cell lines confirmed a significant increase in the release of each candidate biomarker from radiosensitive cells 24 h after treatment with a 2 Gy dose of radiation; no significant increase in secretion was observed in the radioresistant cells after radiation. Immunohistochemistry showed that higher intracellular protein levels of the biomarkers were associated with greater radiosensitivity. Intracellular levels were further assessed in pre-treatment biopsy tissues from patients diagnosed with ER+ BC that were subsequently treated with breast-conserving surgery and RT. High DKK1 and GNPNAT1 intracellular levels were associated with significantly increased recurrence-free survival times, indicating that these two candidate biomarkers have the potential to predict sensitivity to RT. We suggest that the methods highlighted in this study could be utilised for the identification of biomarkers that may have a potential clinical role in personalising and optimising RT dosing regimens, whilst limiting the administration of RT to patients who are unlikely to benefit.

7.
J Pers Med ; 11(7)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34210062

ABSTRACT

Novel biomarkers are needed to continue to improve breast cancer clinical management and outcome. IL6-like cytokines, whose pleiotropic functions include roles in many hallmarks of malignancy, rely on the signal transducer IL6ST (gp130) for all their signalling. To date, 10 separate independent studies based on the analysis of clinical breast cancer samples have identified IL6ST as a predictor. Consistent findings suggest that IL6ST is a positive prognostic factor and is associated with ER status. Interestingly, these studies include 4 multigene signatures (EndoPredict, EER4, IRSN-23 and 42GC) that incorporate IL6ST to predict risk of recurrence or outcome from endocrine or chemotherapy. Here we review the existing evidence on the promising predictive and prognostic value of IL6ST. We also discuss how this potential could be further translated into clinical practice beyond the EndoPredict tool, which is already available in the clinic. The most promising route to further exploit IL6ST's promising predicting power will likely be through additional hybrid multifactor signatures that allow for more robust stratification of ER+ breast tumours into discrete groups with distinct outcomes, thus enabling greater refinement of the treatment-selection process.

9.
Future Oncol ; 17(13): 1665-1681, 2021 May.
Article in English | MEDLINE | ID: mdl-33726508

ABSTRACT

Treatment for HR+/HER2+ patients has been debated, as some tumors within this luminal HER2+ subtype behave like luminal A cancers, whereas others behave like non-luminal HER2+ breast cancers. Recent research and clinical trials have revealed that a combination of hormone and targeted anti-HER2 approaches without chemotherapy provides long-term disease control for at least some HR+/HER2+ patients. Novel anti-HER2 therapies, including neratinib and trastuzumab emtansine, and new agents that are effective in HR+ cancers, including the next generation of oral selective estrogen receptor downregulators/degraders and CDK4/6 inhibitors such as palbociclib, are now being evaluated in combination. This review discusses current trials and results from previous studies that will provide the basis for current recommendations on how to treat newly diagnosed patients with HR+/HER2+ disease.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/therapy , Mastectomy , Neoadjuvant Therapy/trends , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Breast/pathology , Breast/surgery , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Camptothecin/analogs & derivatives , Camptothecin/pharmacology , Camptothecin/therapeutic use , Chemotherapy, Adjuvant/methods , Chemotherapy, Adjuvant/trends , Clinical Trials as Topic , Estrogen Receptor Antagonists/pharmacology , Estrogen Receptor Antagonists/therapeutic use , Female , Humans , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Molecular Targeted Therapy/methods , Molecular Targeted Therapy/trends , Neoadjuvant Therapy/methods , Piperazines/pharmacology , Piperazines/therapeutic use , Progression-Free Survival , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyridines/pharmacology , Pyridines/therapeutic use , Quinolines/pharmacology , Quinolines/therapeutic use , Receptor, ErbB-2/analysis , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/metabolism , Receptors, Estrogen/analysis , Receptors, Estrogen/antagonists & inhibitors , Receptors, Estrogen/metabolism , Receptors, Progesterone/analysis , Receptors, Progesterone/metabolism , Trastuzumab/pharmacology , Trastuzumab/therapeutic use
10.
Front Vet Sci ; 7: 598338, 2020.
Article in English | MEDLINE | ID: mdl-33282935

ABSTRACT

Treating individual patients on the basis of specific factors, such as biomarkers, molecular signatures, phenotypes, environment, and lifestyle is what differentiates the precision medicine initiative from standard treatment regimens. Although precision medicine can be applied to almost any branch of medicine, it is perhaps most easily applied to the field of oncology. Cancer is a heterogeneous disease, meaning that even though patients may be histologically diagnosed with the same cancer type, their tumors may have different molecular characteristics, genetic mutations or tumor microenvironments that can influence prognosis or treatment response. In this review, we describe what methods are currently available to clinicians that allow them to monitor key tumor microenvironmental parameters in a way that could be used to achieve precision medicine for cancer patients. We further describe exciting novel research involving the use of implantable medical devices for precision medicine, including those developed for mapping tumor microenvironment parameters (e.g., O2, pH, and cancer biomarkers), delivering local drug treatments, assessing treatment responses, and monitoring for recurrence and metastasis. Although these research studies have predominantly focused on and were tailored to humans, the results and concepts are equally applicable to veterinary patients. While veterinary clinical studies that have adopted a precision medicine approach are still in their infancy, there have been some exciting success stories. These have included the development of a receptor tyrosine kinase inhibitor for canine mast cell tumors and the production of a PCR assay to monitor the chemotherapeutic response of canine high-grade B-cell lymphomas. Although precision medicine is an exciting area of research, it currently has failed to gain significant translation into human and veterinary healthcare practices. In order to begin to address this issue, there is increasing awareness that cross-disciplinary approaches involving human and veterinary clinicians, engineers and chemists may be needed to help advance precision medicine toward its full integration into human and veterinary clinical practices.

11.
Front Vet Sci ; 7: 439, 2020.
Article in English | MEDLINE | ID: mdl-32851022

ABSTRACT

Research using in vitro canine mammary cancer cell lines and naturally-occurring canine mammary tumors are not only fundamental models used to advance the understanding of cancer in veterinary patients, but are also regarded as excellent translational models of human breast cancer. Human breast cancer is commonly treated with radiotherapy; however, tumor response depends on both innate radiosensitivity and on tumor repopulation by cells that develop radioresistance. Comparative canine and human studies investigating the mechanisms of radioresistance may lead to novel cancer treatments that benefit both species. In this study, we developed a canine mammary cancer (REM-134) radioresistant (RR) cell line and investigated the cellular mechanisms related to the development of acquired radioresistance. We performed a comparative analysis of this resistant model with our previously developed human breast cancer radioresistant cell lines (MCF-7 RR, ZR-751 RR, and MDA-MB-231 RR), characterizing inherent differences through genetic, molecular, and cell biology approaches. RR cells demonstrated enhanced invasion/migration capabilities, with phenotypic evidence suggestive of epithelial-to-mesenchymal transition. Similarities were identified between the REM-134 RR, MCF-7 RR, and ZR-751 RR cell lines in relation to the pattern of expression of both epithelial and mesenchymal genes, in addition to WNT, PI3K, and MAPK pathway activation. Following the development of radioresistance, transcriptomic data indicated that parental MCF-7 and ZR-751 cell lines changed from a luminal A classification to basal/HER2-overexpressing (MCF-7 RR) and normal-like/HER2-overexpressing (ZR-751 RR). These radioresistant subtypes were similar to the REM-134 and REM-134 RR cell lines, which were classified as HER2-overexpressing. To our knowledge, our study is the first to generate a canine mammary cancer RR cell line model and provide a comparative genetic and phenotypic analysis of the mechanisms of acquired radioresistance between canine and human cancer cell lines. We demonstrate that the cellular processes that occur with the development of acquired radioresistance are similar between the human and canine cell lines; our results therefore suggest that the canine model is appropriate to study both human and canine radioresistant mammary cancers, and that treatment strategies used in human medicine may also be applicable to veterinary patients.

12.
Front Oncol ; 10: 617, 2020.
Article in English | MEDLINE | ID: mdl-32411603

ABSTRACT

Despite extensive research over many decades, human breast cancer remains a major worldwide health concern. Advances in pre-clinical and clinical research has led to significant improvements in recent years in how we manage breast cancer patients. Although survival rates of patients suffering from localized disease has improved significantly, the prognosis for patients diagnosed with metastatic disease remains poor with 5-year survival rates at only 25%. In vitro studies using immortalized cell lines and in vivo mouse models, typically using xenografted cell lines or patient derived material, are commonly used to study breast cancer. Although these techniques have undoubtedly increased our molecular understanding of breast cancer, these research models have significant limitations and have contributed to the high attrition rates seen in cancer drug discovery. It is estimated that only 3-6% of drugs that show promise in these pre-clinical models will reach clinical use. Models that can reproduce human breast cancer more accurately are needed if significant advances are to be achieved in improving cancer drug research, treatment outcomes, and prognosis. Canine mammary tumors are a naturally-occurring heterogenous group of cancers that have several features in common with human breast cancer. These similarities include etiology, signaling pathway activation and histological classification. In this review article we discuss the use of naturally-occurring canine mammary tumors as a translational animal model for human breast cancer research.

13.
Front Oncol ; 10: 628, 2020.
Article in English | MEDLINE | ID: mdl-32391281

ABSTRACT

Radiotherapy remains an important treatment modality in nearly two thirds of all cancers, including the primary curative or palliative treatment of breast cancer. Unfortunately, largely due to tumor heterogeneity, tumor radiotherapy response rates can vary significantly, even between patients diagnosed with the same tumor type. Although in recent years significant technological advances have been made in the way radiation can be precisely delivered to tumors, it is proving more difficult to personalize radiotherapy regimens based on cancer biology. Biomarkers that provide prognostic or predictive information regarding a tumor's intrinsic radiosensitivity or its response to treatment could prove valuable in helping to personalize radiation dosing, enabling clinicians to make decisions between different treatment options whilst avoiding radiation-induced toxicity in patients unlikely to gain therapeutic benefit. Studies have investigated numerous ways in which both patient and tumor radiosensitivities can be assessed. Tumor molecular profiling has been used to develop radiosensitivity gene signatures, while the assessment of specific intracellular or secreted proteins, including circulating tumor cells, exosomes and DNA, has been performed to identify prognostic or predictive biomarkers of radiation response. Finally, the investigation of biomarkers related to radiation-induced toxicity could provide another means by which radiotherapy could become personalized. In this review, we discuss studies that have used these methods to identify or develop prognostic/predictive signatures of radiosensitivity, and how such assays could be used in the future as a means of providing personalized radiotherapy.

14.
Explor Target Antitumor Ther ; 1(2): 71-100, 2020.
Article in English | MEDLINE | ID: mdl-36046070

ABSTRACT

Dysregulation of cellular pH is frequent in solid tumours and provides potential opportunities for therapeutic intervention. The acidic microenvironment within a tumour can promote migration, invasion and metastasis of cancer cells through a variety of mechanisms. Pathways associated with the control of intracellular pH that are under consideration for intervention include carbonic anhydrase IX, the monocarboxylate transporters (MCT, MCT1 and MCT4), the vacuolar-type H+-ATPase proton pump, and the sodium-hydrogen exchanger 1. This review will describe progress in the development of inhibitors to these targets.

15.
Front Oncol ; 9: 534, 2019.
Article in English | MEDLINE | ID: mdl-31316911

ABSTRACT

In vitro cell line and in vivo murine models have historically dominated pre-clinical cancer research. These models can be expensive and time consuming and lead to only a small percentage of anti-cancer drugs gaining a license for human use. Large animal models that reflect human disease have high translational value; these can be used to overcome current pre-clinical research limitations through the integration of drug development techniques with surgical procedures and anesthetic protocols, along with emerging fields such as implantable medical devices. Ovine pulmonary adenocarcinoma (OPA) is a naturally-occurring lung cancer that is caused by the jaagsiekte sheep retrovirus. The disease has similar histological classification and oncogenic pathway activation to that of human lung adenocarcinomas making it a valuable model for studying human lung cancer. Developing OPA models to include techniques used in the treatment of human lung cancer would enhance its translational potential, making it an excellent research tool in assessing cancer therapeutics. In this study we developed a novel OPA model to validate the ability of miniaturized implantable O2 and pH sensors to monitor the tumor microenvironment. Naturally-occurring pre-clinical OPA cases were obtained through an on-farm ultrasound screening programme. Sensors were implanted into OPA tumors of anesthetized sheep using a CT-guided trans-thoracic percutaneous implantation procedure. This study reports the findings from 9 sheep that received sensor implantations. Time taken from initial CT scans to the placement of a single sensor into an OPA tumor was 45 ± 5 min, with all implantations resulting in the successful delivery of sensors into tumors. Immediate post-implantation mild pneumothoraces occurred in 4 sheep, which was successfully managed in all cases. This is, to the best of our knowledge, the first description of the use of naturally-occurring OPA cases as a pre-clinical surgical model. Through the integration of techniques used in the treatment of human lung cancer patients, including ultrasound, general anesthesia, CT and surgery into the OPA model, we have demonstrated its translational potential. Although our research was tailored specifically for the implantation of sensors into lung tumors, we believe the model could also be developed for other pre-clinical applications.

16.
Am J Physiol Gastrointest Liver Physiol ; 317(2): G242-G252, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31188641

ABSTRACT

Recent advances in the fields of electronics and microfabrication techniques have led to the development of implantable medical devices for use within the field of precision medicine. Monitoring visceral surface tissue O2 tension (PTo2) by means of an implantable sensor is potentially useful in many clinical situations, including the perioperative management of patients undergoing intestinal resection and anastomosis. This concept could provide a means by which treatment could be tailored to individual patients. This study describes the in vivo validation of a novel, miniaturized electrochemical O2 sensor to provide real-time data on intestinal PTo2. A single O2 sensor was placed onto the serosal surface of the small intestine of anesthetized rats that were exposed to ischemic (superior mesenteric artery occlusion) and hypoxemic (alterations in inspired fractional O2 concentrations) insults. Control experiments demonstrated that the sensors can function and remain stable in an in vivo environment. Intestinal PTo2 decreased following superior mesenteric artery occlusion and with reductions in inspired O2 concentrations. These results were reversible after reinstating blood flow or by increasing inspired O2 concentrations. We have successfully developed an anesthetized rat intestinal ischemic and hypoxic model for validation of a miniaturized O2 sensor to provide real-time measurement of intestinal PTo2. Our results support further validation of the sensors in physiological conditions using a large animal model to provide evidence of their use in clinical applications where monitoring visceral surface tissue O2 tension is important.NEW & NOTEWORTHY This is the first report of real-time continuous measurements of intestinal oxygen tension made using a microfabricated O2 sensor. Using a developed rodent model, we have validated this sensor's ability to accurately measure dynamic and reversible changes in intestinal oxygenation that occur through ischemic and hypoxemic insults. Continuous monitoring of local intestinal oxygenation could have value in the postoperative monitoring of patients having undergone intestinal surgery.


Subject(s)
Intestines/blood supply , Ischemia , Mesenteric Artery, Superior , Mesenteric Vascular Occlusion/complications , Monitoring, Physiologic , Oxygen , Animals , Dimensional Measurement Accuracy , Ischemia/diagnosis , Ischemia/etiology , Materials Testing/methods , Microtechnology , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Oxygen/analysis , Oxygen/chemistry , Oxygen/metabolism , Oxygen Consumption , Rats , Reproducibility of Results , Surface Tension
17.
Front Oncol ; 9: 335, 2019.
Article in English | MEDLINE | ID: mdl-31106157

ABSTRACT

Lung cancer represents a major worldwide health concern; although advances in patient management have improved outcomes for some patients, overall 5-year survival rates are only around 15%. In vitro studies and mouse models are commonly used to study lung cancer and their use has increased the molecular understanding of the disease. Unfortunately, mouse models are poor predictors of clinical outcome and seldom mimic advanced stages of the human disease. Animal models that more accurately reflect human disease are required for progress to be made in improving treatment outcomes and prognosis. Similarities in pulmonary anatomy and physiology potentially make sheep better models for studying human lung function and disease. Ovine pulmonary adenocarcinoma (OPA) is a naturally occurring lung cancer that is caused by the jaagsiekte sheep retrovirus. The disease is endemic in many countries throughout the world and has several features in common with human lung adenocarcinomas, including histological classification and activation of common cellular signaling pathways. Here we discuss the in vivo and in vitro OPA models that are currently available and describe the advantages of using pre-clinical naturally occurring OPA cases as a translational animal model for human lung adenocarcinoma. The challenges and options for obtaining these OPA cases for research purposes, along with their use in developing novel techniques for the evaluation of chemotherapeutic agents or for monitoring the tumor microenvironment in response to treatment, are also discussed.

18.
Radiat Oncol ; 14(1): 64, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30987655

ABSTRACT

BACKGROUND: Radiotherapy plays an important role in the multimodal treatment of breast cancer. The response of a breast tumour to radiation depends not only on its innate radiosensitivity but also on tumour repopulation by cells that have developed radioresistance. Development of effective cancer treatments will require further molecular dissection of the processes that contribute to resistance. METHODS: Radioresistant cell lines were established by exposing MDA-MB-231, MCF-7 and ZR-751 parental cells to increasing weekly doses of radiation. The development of radioresistance was evaluated through proliferation and colony formation assays. Phenotypic characterisation included migration and invasion assays and immunohistochemistry. Transcriptomic data were also generated for preliminary hypothesis generation involving pathway-focused analyses. RESULTS: Proliferation and colony formation assays confirmed radioresistance. Radioresistant cells exhibited enhanced migration and invasion, with evidence of epithelial-to-mesenchymal-transition. Significantly, acquisition of radioresistance in MCF-7 and ZR-751 cell lines resulted in a loss of expression of both ERα and PgR and an increase in EGFR expression; based on transcriptomic data they changed subtype classification from their parental luminal A to HER2-overexpressing (MCF-7 RR) and normal-like (ZR-751 RR) subtypes, indicating the extent of phenotypic changes and cellular plasticity involved in this process. Radioresistant cell lines derived from ER+ cells also showed a shift from ER to EGFR signalling pathways with increased MAPK and PI3K activity. CONCLUSIONS: This is the first study to date that extensively describes the development and characterisation of three novel radioresistant breast cancer cell lines through both genetic and phenotypic analysis. More changes were identified between parental cells and their radioresistant derivatives in the ER+ (MCF-7 and ZR-751) compared with the ER- cell line (MDA-MB-231) model; however, multiple and likely interrelated mechanisms were identified that may contribute to the development of acquired resistance to radiotherapy.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/pathology , Gamma Rays , Radiation Tolerance , Apoptosis , Breast Neoplasms/genetics , Breast Neoplasms/radiotherapy , Cell Movement , Cell Proliferation , Female , Gene Expression Profiling , Humans , Neoplasm Invasiveness , Radiation-Sensitizing Agents/pharmacology , Signal Transduction , Sulfonamides/pharmacology , Tumor Cells, Cultured
19.
Toxicol Pathol ; 47(4): 461-468, 2019 06.
Article in English | MEDLINE | ID: mdl-31018785

ABSTRACT

Anatomic pathology and clinical pathology end points are standard components of almost every nonclinical general toxicity study conducted during the risk assessment of novel pharmaceuticals and chemicals. On occasion, an ultrastructural pathology evaluation using transmission electron microscopy (TEM) may be included in nonclinical toxicity studies. Transmission electron microscopy is most commonly used when a light microscopic finding may require further characterization that could inform on the pathogenesis and/or mechanism of action. Regulatory guidance do not address the use of TEM in general study designs nor whether these assessments should be performed in laboratories conducted in compliance with Good Laboratory Practices. The Scientific and Regulatory Policy Committee of the Society of Toxicologic Pathology (STP) formed a Working Group to assess the current practices on the use of TEM in nonclinical toxicity studies. The Working Group constructed a survey sent to members of societies of toxicologic pathology in the United States, Europe, Britain, and Japan, and responses were collected through the STP for evaluation by the Working Group. The survey results and regulatory context are discussed, as are "points to consider" from the collective experience of the Working Group. This survey indicates that TEM remains an essential diagnostic option for complementing toxicologic pathology evaluations. *This Points to Consider article is a product of a Society of Toxicologic Pathology (STP) Working Group commissioned by the Scientific and Regulatory Policy Committee (SRPC) of the STP. It has been reviewed and approved by the SRPC and Executive Committee of the STP but it does not represent a formal Best Practice recommendation of the Society; rather, it is intended to provide key "points to consider" in designing nonclinical studies or interpreting data from toxicity and safety studies intended to support regulatory submissions. The points expressed in this document are those of the authors and do not reflect views or policies of the employing institutions. Readers of Toxicologic Pathology are encouraged to send their thoughts on these articles or ideas for new topics to the Editor.


Subject(s)
Microscopy, Electron, Transmission , Pathology, Clinical/methods , Toxicology/methods , Advisory Committees , Animals , Drug Evaluation, Preclinical/methods , Drug Evaluation, Preclinical/standards , Guidelines as Topic , Humans , Microscopy, Electron, Transmission/methods , Microscopy, Electron, Transmission/standards , Pathology, Clinical/legislation & jurisprudence , Pathology, Clinical/standards , Societies, Scientific , Toxicity Tests/methods , Toxicity Tests/standards , Toxicology/legislation & jurisprudence , Toxicology/standards , United States , United States Food and Drug Administration
20.
Article in English | MEDLINE | ID: mdl-30859401

ABSTRACT

The immense costs in both financial terms and preclinical research effort that occur in the development of anticancer drugs are unfortunately not matched by a substantial increase in improved clinical therapies due to the high rate of failure during clinical trials. This may be due to issues with toxicity or lack of clinical effectiveness when the drug is evaluated in patients. Currently, much cancer research is driven by the need to develop therapies that can exploit cancer cell adaptations to conditions in the tumor microenvironment such as acidosis and hypoxia, the requirement for more-specific, targeted treatments, or the exploitation of 'precision medicine' that can target known genomic changes in patient DNA. The high attrition rate for novel anticancer therapies suggests that the preclinical methods used in screening anticancer drugs need improvement. This chapter considers the advantages and disadvantages of 3D organotypic models in both cancer research and cancer drug screening, particularly in the areas of targeted drugs and the exploitation of genomic changes that can be used for therapeutic advantage in precision medicine.

SELECTION OF CITATIONS
SEARCH DETAIL
...