Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 346
Filter
1.
Environ Health Perspect ; 132(7): 77001, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38968089

ABSTRACT

BACKGROUND: Organophosphate esters (OPEs), used ubiquitously as flame retardants and plasticizers in consumer products, are suspected of having developmental toxicity. OBJECTIVES: Our study aimed to estimate associations between prenatal exposure to OPEs and fetal growth, including both ultrasound (head circumference, abdominal circumference, femur length, and estimated fetal weight) and delivery [birth weight z-score, small-for-gestational age (SGA), and large-for-gestational age (LGA)] measures of growth. METHODS: In the LIFECODES Fetal Growth Study (2008-2018), an enriched case-cohort of 900 babies born at the small and large ends of the growth spectrum, we quantified OPE biomarkers in three urine samples per pregnant participant and abstracted ultrasound and delivery measures of fetal growth from medical records. We estimated associations between pregnancy-averaged log-transformed OPE biomarkers and repeated ultrasound measures of fetal growth using linear mixed-effects models, and delivery measures of fetal growth using linear (birth weight) and logistic (SGA and LGA) regression models. RESULTS: Most OPE biomarkers were positively associated with at least one ultrasound measure of fetal growth, but associations with delivery measures were largely null. For example, an interquartile range (IQR; 1.31 ng/mL) increase in bis(2-chloroethyl) phosphate concentration was associated with larger z-scores in head circumference [mean difference (difference): 0.09; 95% confidence interval (CI): 0.01, 0.17], abdominal circumference (difference: 0.10; 95% CI: 0.02, 0.18), femur length (difference: 0.11; 95% CI: 0.03, 0.19), and estimated fetal weight (difference: 0.13; 95% CI: 0.04, 0.22) but not birth weight (difference: 0.04; 95% CI: -0.08, 0.17). At delivery, an IQR (1.00 ng/mL) increase in diphenyl phosphate (DPHP) concentration was associated with an SGA birth (odds ratio: 1.46; 95% CI: 1.10, 1.94). CONCLUSIONS: In a large prospective cohort, gestational OPE exposures were associated with larger fetal size during pregnancy, but associations at delivery were null. DPHP concentrations were associated with heightened risk of an SGA birth. These findings suggest that OPE exposure may affect fetal development. https://doi.org/10.1289/EHP14647.


Subject(s)
Fetal Development , Flame Retardants , Maternal Exposure , Plasticizers , Humans , Female , Fetal Development/drug effects , Plasticizers/toxicity , Pregnancy , Maternal Exposure/statistics & numerical data , Organophosphates , Adult , Birth Weight/drug effects , Infant, Newborn , Esters , Biomarkers/urine , Cohort Studies , Male
2.
Environ Int ; 190: 108866, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38968832

ABSTRACT

INTRODUCTION: Environmental phenols are endocrine disrupting chemicals hypothesized to affect early life development. Previous research examining the effects of phenols on fetal growth has focused primarily on associations with measures of size at delivery. Few have included ultrasound measures to examine growth across pregnancy. OBJECTIVE: Investigate associations between prenatal exposure to phenols and ultrasound and delivery measures of fetal growth. METHODS: Using the LIFECODES Fetal Growth Study (n = 900), a case-cohort including 248 small-for-gestational-age, 240 large-for-gestational age, and 412 appropriate-for-gestational-age births, we estimated prenatal exposure to 12 phenols using three urine samples collected during pregnancy (median 10, 24, and 35 weeks gestation). We abstracted ultrasound and delivery measures of fetal growth from medical records. We estimated associations between pregnancy-average phenol biomarker concentrations and repeated ultrasound measures of fetal growth using linear mixed effects models and associations with birthweight using linear regression models. We also used logistic regression models to estimate associations with having a small- or large-for-gestational birth. RESULTS: We observed positive associations between 2,4-dichlorophenol, benzophenone-3, and triclosan (TCS) and multiple ultrasound measures of fetal growth. For example, TCS was associated with a 0.09 (95 % CI: 0.01, 0.18) higher estimated fetal weight z-score longitudinally across pregnancy. This effect size corresponds to a 21 g increase in estimated fetal weight at 30 weeks gestation. Associations with delivery measures of growth were attenuated, but TCS remained positively associated with birthweight z-scores (mean difference: 0.13, 95 % CI: 0.02, 0.25). Conversely, methylparaben was associated with higher odds of a small-for-gestational age birth (odds ratio: 1.45, 95 % CI: 1.06, 1.98). DISCUSSION: We observed associations between some biomarkers of phenol exposure and ultrasound measures of fetal growth, though associations at the time of delivery were attenuated. These findings are consistent with hypotheses that phenols have the potential to affect growth during the prenatal period.

3.
Environ Int ; 190: 108848, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38936064

ABSTRACT

Preterm birth is a leading cause of neonatal mortality and presents significant public health concerns. Environmental chemical exposures during pregnancy may be partially to blame for disrupted delivery timing. Polycyclic aromatic hydrocarbons (PAHs) are products of incomplete combustion, exposure to which occurs via inhalation of cigarette smoke and automobile exhaust, and ingestion of charred meats. Exposure to PAHs in the US population is widespread, and pregnant women represent a susceptible population to adverse effects of PAHs. We aimed to investigate associations between gestational exposure to PAHs and birth outcomes, including timing of delivery and infant birth size. We utilized data from the PROTECT birth cohort where pregnant women provided spot urine samples at up to three study visits (median 16, 20, and 24 weeks gestation). Urine samples were assayed for eight hydroxylated PAH concentrations. Associations between PAHs and birth outcomes were calculated using linear/logistic regression models, with adjustment for maternal age, education, pre-pregnancy BMI, and daily exposure to environmental tobacco smoke. Models accounted for urine dilution using specific gravity. We also explored effect modification by infant sex. Interquartile range (IQR) increases in all averaged PAH exposures during the second trimester were associated with reduced gestational age at delivery and increased odds of overall PTB, although these associations were not statistically significant (p > 0.05). Most PAHs at the second study visit were most strongly associated with earlier delivery and increased odds of overall and spontaneous PTB, with visit 2 2-hydroxynapthalene (2-NAP) being significantly associated with increased odds of overall PTB (OR:1.55; 95 %CI: 1.05,2.29). Some PAHs resulted in earlier timing of delivery among only female fetuses, specifically 2-NAP on overall PTB (female OR:1.52 95 %CI: 1.02,2.27; male OR:0.78, 95 %CI: 0.53,1.15). Future work should more deeply investigate differential physiological impacts of PAH exposure between pregnancies with male and female fetuses, and on varying developmental processes occurring at different points through pregnancy.

4.
Chemosphere ; 360: 142363, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38768789

ABSTRACT

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals linked to adverse pregnancy outcomes. Although their underlying biological mechanisms are not fully understood, evidence suggests PFAS may disrupt endocrine functions and contribute to oxidative stress (OS) and inflammation. OBJECTIVE: We examined associations between early pregnancy PFAS exposure and OS biomarkers, exploring potential effect modifications by fetal sex and maternal race. METHODS: We used data from 469 LIFECODES participants with measured plasma PFAS (median 10 weeks gestation) and repeated measures (median 10, 18, 26, and 35 weeks gestation) of urinary OS biomarkers [8-iso-prostaglandin-F2α (8-isoprostane) and 8-hydroxydeoxyguanosine (8-OHdG)]. Protein damage biomarkers (chlorotyrosine, dityrosine, and nitrotyrosine) were additionally measured in plasma from a subset (N = 167) during the third visit. Associations between each PFAS and OS biomarkers were examined using linear mixed-effects models and multivariable linear regressions, adjusting for potential confounders, including maternal age, race, education level, pre-pregnancy BMI, insurance status, and parity. Effect modifications were evaluated by including an interaction term between each PFAS and fetal sex or maternal race in the models. RESULTS: We observed significant positive associations between PFOS and 8-isoprostane, with a 9.68% increase in 8-isoprostane levels (95% CI: 0.10%, 20.18%) per interquartile range increase in PFOS. In contrast, PFUA was negatively associated [9.32% (95% CI: -17.68%, -0.11%)], while there were suggestive positive associations for MPAH and PFOA with 8-isoprostane. The associations of several PFAS with 8-OHdG varied by fetal sex, showing generally positive trends in women who delivered females, but negative or null in those who delivered males. No significant effect modification by maternal race was observed. CONCLUSIONS: This study provides evidence linking PFAS exposure to OS during pregnancy, with potential sex-specific effects of certain PFAS on 8-OHdG. Further research should explore additional OS/inflammatory biomarkers and assess the modifying effects of dietary and behavioral patterns across diverse populations.


Subject(s)
8-Hydroxy-2'-Deoxyguanosine , Biomarkers , Dinoprost , Environmental Pollutants , Fluorocarbons , Maternal Exposure , Oxidative Stress , Humans , Female , Fluorocarbons/blood , Oxidative Stress/drug effects , Pregnancy , Adult , Maternal Exposure/statistics & numerical data , Maternal Exposure/adverse effects , Biomarkers/blood , Environmental Pollutants/blood , Dinoprost/analogs & derivatives , Dinoprost/blood , Male , Young Adult , Alkanesulfonic Acids/blood
5.
Environ Res ; 255: 119205, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38782334

ABSTRACT

BACKGROUND: Polycyclic aromatic hydrocarbons (PAHs) are endocrine disruptors resulting from incomplete combustion. Pregnancy represents a particularly vulnerable period to such exposures, given the significant influence of hormone physiology on fetal growth and pregnancy outcomes. Maternal thyroid hormones play crucial roles in fetal development and pregnancy outcomes. However, limited studies have examined gestational PAH exposure and maternal thyroid hormones during pregnancy. METHODS: Our study included 439 women enrolled in the LIFECODES birth cohort in Boston, aiming to explore the relationship between urinary PAH metabolites and thyroid hormones throughout pregnancy. Urine samples for PAH metabolite analysis and plasma samples for thyroid hormone were measured up to four visits throughout gestation. Single pollutant analyses employed linear mixed effect models to investigate individual associations between each PAH metabolite and thyroid hormone concentration. Sensitivity analyses were conducted to assess potential susceptibility windows and fetal-sex-specific effects of PAH exposure. Mixture analyses utilized quantile g-computation to evaluate the collective impact of eight PAH metabolites on thyroid hormone concentrations. Additionally, Bayesian kernel machine regression (BKMR) was employed to explore potential non-linear associations and interactions between PAH metabolites. Subject-specific random intercepts were incorporated to address intra-individual correlation of serial measurements over time in both single pollutant and mixture analyses. RESULTS: Our findings revealed positive trends in associations between PAH metabolites and thyroid hormones, both individually and collectively as a mixture. Sensitivity analyses indicated that these associations were influenced by the study visit and fetal sex. Mixture analyses suggested non-linear relationships and interactions between different PAH exposures. CONCLUSIONS: This comprehensive investigation underscores the critical importance of understanding the impact of PAH exposures on thyroid hormone physiology during pregnancy. The findings highlight the intricate interplay between environmental pollutants and human pregnancy physiology, emphasizing the need for targeted interventions and public health policies to mitigate adverse outcomes associated with prenatal PAH exposure.


Subject(s)
Maternal Exposure , Polycyclic Aromatic Hydrocarbons , Thyroid Hormones , Humans , Female , Pregnancy , Polycyclic Aromatic Hydrocarbons/urine , Thyroid Hormones/blood , Adult , Maternal Exposure/adverse effects , Environmental Pollutants/urine , Environmental Pollutants/blood , Boston , Cohort Studies , Young Adult , Endocrine Disruptors/urine
6.
Environ Sci Technol ; 58(19): 8264-8277, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38691655

ABSTRACT

Prenatal per- and poly-fluoroalkyl substances (PFAS) exposure may influence gestational outcomes through bioactive lipids─metabolic and inflammation pathway indicators. We estimated associations between prenatal PFAS exposure and bioactive lipids, measuring 12 serum PFAS and 50 plasma bioactive lipids in 414 pregnant women (median 17.4 weeks' gestation) from three Environmental influences on Child Health Outcomes Program cohorts. Pairwise association estimates across cohorts were obtained through linear mixed models and meta-analysis, adjusting the former for false discovery rates. Associations between the PFAS mixture and bioactive lipids were estimated using quantile g-computation. Pairwise analyses revealed bioactive lipid levels associated with PFDeA, PFNA, PFOA, and PFUdA (p < 0.05) across three enzymatic pathways (cyclooxygenase, cytochrome p450, lipoxygenase) in at least one combined cohort analysis, and PFOA and PFUdA (q < 0.2) in one linear mixed model. The strongest signature revealed doubling in PFOA corresponding with PGD2 (cyclooxygenase pathway; +24.3%, 95% CI: 7.3-43.9%) in the combined cohort. Mixture analysis revealed nine positive associations across all pathways with the PFAS mixture, the strongest signature indicating a quartile increase in the PFAS mixture associated with PGD2 (+34%, 95% CI: 8-66%), primarily driven by PFOS. Bioactive lipids emerged as prenatal PFAS exposure biomarkers, deepening insights into PFAS' influence on pregnancy outcomes.


Subject(s)
Fluorocarbons , Lipids , Humans , Female , Pregnancy , Lipids/blood , Fluorocarbons/blood , Child Health , Cohort Studies , Cross-Sectional Studies , Adult , Environmental Pollutants/blood , Environmental Exposure , Maternal Exposure , Child
7.
Environ Int ; 187: 108678, 2024 May.
Article in English | MEDLINE | ID: mdl-38696977

ABSTRACT

BACKGROUND: Phthalate exposure may contribute to hypertensive disorders of pregnancy (HDP), including preeclampsia/eclampsia (PE/E), but epidemiologic studies are lacking. OBJECTIVES: To evaluate associations of pregnancy phthalate exposure with development of PE/E and HDP. METHODS: Using data from 3,430 participants in eight Environmental influences on Child Health Outcomes (ECHO) Program cohorts (enrolled from 1999 to 2019), we quantified concentrations of 13 phthalate metabolites (8 measured in all cohorts, 13 in a subset of four cohorts) in urine samples collected at least once during pregnancy. We operationalized outcomes as PE/E and composite HDP (PE/E and/or gestational hypertension). After correcting phthalate metabolite concentrations for urinary dilution, we evaluated covariate-adjusted associations of individual phthalates with odds of PE/E or composite HDP via generalized estimating equations, and the phthalate mixture via quantile-based g-computation. We also explored effect measure modification by fetal sex using stratified models. Effect estimates are reported as odds ratios (OR) with 95% confidence intervals (95% CIs). RESULTS: In adjusted analyses, a doubling of mono-benzyl phthalate (MBzP) and of mono (3-carboxypropyl) phthalate (MCPP) concentrations was associated with higher odds of PE/E as well as composite HDP, with somewhat larger associations for PE/E. For example, a doubling of MCPP was associated with 1.12 times the odds of PE/E (95%CI 1.00, 1.24) and 1.02 times the odds of composite HDP (95%CI 1.00, 1.05). A quartile increase in the phthalate mixture was associated with 1.27 times the odds of PE/E (95%CI 0.94, 1.70). A doubling of mono-carboxy isononyl phthalate (MCiNP) and of mono-carboxy isooctyl phthalate (MCiOP) concentrations were associated with 1.08 (95%CI 1.00, 1.17) and 1.11 (95%CI 1.03, 1.19) times the odds of PE/E. Effect estimates for PE/E were generally larger among pregnancies carrying female fetuses. DISCUSSION: In this study, multiple phthalates were associated with higher odds of PE/E and HDP. Estimates were precise and some were low in magnitude. Interventions to reduce phthalate exposures during pregnancy may help mitigate risk of these conditions.


Subject(s)
Environmental Pollutants , Phthalic Acids , Pre-Eclampsia , Humans , Phthalic Acids/urine , Pregnancy , Female , Adult , Pre-Eclampsia/urine , Pre-Eclampsia/epidemiology , Environmental Pollutants/urine , Hypertension, Pregnancy-Induced/epidemiology , Hypertension, Pregnancy-Induced/urine , Maternal Exposure/statistics & numerical data , Male , Child Health , Cohort Studies , Environmental Exposure/analysis , Young Adult , Child
8.
Sci Total Environ ; 928: 172295, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38588744

ABSTRACT

BACKGROUND/AIM: Heavy metals are known to induce oxidative stress and inflammation, and the association between metal exposure and adverse birth outcomes is well established. However, there lacks research on biomarker profiles linking metal exposures and adverse birth outcomes. Eicosanoids are lipid molecules that regulate inflammation in the body, and there is growing evidence that suggests associations between plasma eicosanoids and pregnancy outcomes. Eicosanoids may aid our understanding of etiologic birth pathways. Here, we assessed associations between maternal blood metal concentrations with eicosanoid profiles among 654 pregnant women in the Puerto Rico PROTECT birth cohort. METHODS: We measured concentrations of 11 metals in whole blood collected at median 18 and 26 weeks of pregnancy, and eicosanoid profiles measured in plasma collected at median 26 weeks. Multivariable linear models were used to regress eicosanoids on metals concentrations. Effect modification by infant sex was explored using interaction terms. RESULTS: A total of 55 eicosanoids were profiled. Notably, 12-oxoeicosatetraenoic acid (12-oxoETE) and 15-oxoeicosatetraenoic acid (15-oxoETE), both of which exert inflammatory activities, had the greatest number of significant associations with metal concentrations. These eicosanoids were associated with increased concentrations of Cu, Mn, and Zn, and decreased concentrations of Cd, Co, Ni, and Pb, with the strongest effect sizes observed for 12-oxoETE and Pb (ß:-33.5,95 %CI:-42.9,-22.6) and 15-oxoETE and Sn (ß:43.2,95 %CI:11.4,84.1). Also, we observed differences in metals-eicosanoid associations by infant sex. Particularly, Cs and Mn had the most infant sex-specific significant associations with eicosanoids, which were primarily driven by female fetuses. All significant sex-specific associations with Cs were inverse among females, while significant sex-specific associations with Mn among females were positive within the cyclooxygenase group but inverse among the lipoxygenase group. CONCLUSION: Certain metals were significantly associated with eicosanoids that are responsible for regulating inflammatory responses. Eicosanoid-metal associations may suggest a role for eicosanoids in mediating metal-induced adverse birth outcomes.


Subject(s)
Eicosanoids , Maternal Exposure , Humans , Female , Eicosanoids/blood , Pregnancy , Puerto Rico , Adult , Maternal Exposure/statistics & numerical data , Environmental Pollutants/blood , Metals, Heavy/blood , Young Adult , Metals/blood
10.
medRxiv ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38496435

ABSTRACT

Quantitative characterization of the health impacts associated with exposure to chemical mixtures has received considerable attention in current environmental and epidemiological studies. With many existing statistical methods and emerging approaches, it is important for practitioners to understand when each method is best suited for their inferential goals. In this study, we conduct a review and comparison of 11 analytical methods available for use in mixtures research, through extensive simulation studies for continuous and binary outcomes. These methods fall in three different classes: identifying important components of a mixture, identifying interactions and creating a summary score for risk stratification and prediction. We carry out an illustrative data analysis in the PROTECT birth cohort from Puerto Rico. Most importantly we develop an integrated package "CompMix" that provides a platform for mixtures analysis where the practitioner can implement a pipeline for several types of mixtures analysis. Our simulation results suggest that the choice of methods depends on the goal of analysis and there is no clear winner across the board. For selection of important toxicants in the mixture and for identifying interactions, Elastic net by Zou et al. (Enet), Lasso for Hierarchical Interactions by Bien et al (HierNet), Selection of nonlinear interactions by a forward stepwise algorithm by Narisetty et al. (SNIF) have the most stable performance across simulation settings. Additionally, the predictive performance of the Super Learner ensembling method by Van de Laan et al. and HierNet are found to be superior to the rest of the methods. For overall summary or a cumulative measure, we find that using the Super Learner to combine multiple Environmental Risk Scores can lead to improved risk stratification properties. We have developed an R package "CompMix: A comprehensive toolkit for environmental mixtures analysis", allowing users to implement a variety of tasks under different settings and compare the findings. In summary, our study offers guidelines for selecting appropriate statistical methods for addressing specific scientific questions related to mixtures research. We identify critical gaps where new and better methods are needed.

11.
Lancet Planet Health ; 8(2): e74-e85, 2024 02.
Article in English | MEDLINE | ID: mdl-38331533

ABSTRACT

BACKGROUND: Phthalates are synthetic chemicals widely used in consumer products and have been identified to contribute to preterm birth. Existing studies have methodological limitations and potential effects of di-2-ethylhexyl phthalate (DEHP) replacements are poorly characterised. Attributable fractions and costs have not been quantified, limiting the ability to weigh trade-offs involved in ongoing use. We aimed to leverage a large, diverse US cohort to study associations of phthalate metabolites with birthweight and gestational age, and estimate attributable adverse birth outcomes and associated costs. METHODS: In this prospective analysis we used extant data in the US National Institutes of Health Environmental influences on Child Health Outcomes (ECHO) Program from 1998 to 2022 to study associations of 20 phthalate metabolites with gestational age at birth, birthweight, birth length, and birthweight for gestational age z-scores. We also estimated attributable adverse birth outcomes and associated costs. Mother-child dyads were included in the study if there were one or more urinary phthalate measurements during the index pregnancy; data on child's gestational age and birthweight; and singleton delivery. FINDINGS: We identified 5006 mother-child dyads from 13 cohorts in the ECHO Program. Phthalic acid, diisodecyl phthalate (DiDP), di-n-octyl phthalate (DnOP), and diisononyl phthalate (DiNP) were most strongly associated with gestational age, birth length, and birthweight, especially compared with DEHP or other metabolite groupings. Although DEHP was associated with preterm birth (odds ratio 1·45 [95% CI 1·05-2·01]), the risks per log10 increase were higher for phthalic acid (2·71 [1·91-3·83]), DiNP (2·25 [1·67-3·00]), DiDP (1·69 [1·25-2·28]), and DnOP (2·90 [1·96-4·23]). We estimated 56 595 (sensitivity analyses 24 003-120 116) phthalate-attributable preterm birth cases in 2018 with associated costs of US$3·84 billion (sensitivity analysis 1·63- 8·14 billion). INTERPRETATION: In a large, diverse sample of US births, exposure to DEHP, DiDP, DiNP, and DnOP were associated with decreased gestational age and increased risk of preterm birth, suggesting substantial opportunities for prevention. This finding suggests the adverse consequences of substitution of DEHP with chemically similar phthalates and need to regulate chemicals with similar properties as a class. FUNDING: National Institutes of Health.


Subject(s)
Diethylhexyl Phthalate , Phthalic Acids , Pregnancy Complications , Premature Birth , United States/epidemiology , Pregnancy , Female , Humans , Infant, Newborn , Premature Birth/chemically induced , Premature Birth/epidemiology , Birth Weight
12.
Sci Total Environ ; 921: 170889, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38360311

ABSTRACT

Exposure to phenols and parabens may contribute to increased maternal inflammation and adverse birth outcomes, but these effects are not well-studied in humans. This study aimed to investigate relationships between concentrations of 8 phenols and 4 parabens with 6 inflammatory biomarkers (C-reactive protein (CRP); matrix metalloproteinases (MMP) 1, 2, and 9; intercellular adhesion molecule-1 (ICAM-1); and vascular cell adhesion molecule-1 (VCAM-1)) measured at two time points in pregnancy in the PROTECT birth cohort in Puerto Rico. Linear mixed models were used, adjusting for covariates of interest. Results are expressed as the percent change in outcome per interquartile range (IQR) increase in exposure. Particularly among phenols, numerous significant negative associations were found, for example, between benzophenone-3 and CRP (-11.21 %, 95 % CI: -17.82, -4.07) and triclocarban and MMP2 (-9.87 %, 95 % CI: -14.05, -5.5). However, significant positive associations were also detected, for instance, between bisphenol-A (BPA) and CRP (9.77 %, 95 % CI: 0.67, 19.68) and methyl-paraben and MMP1 (10.78 %, 95 % CI: 2.17, 20.11). Significant interactions with female fetal sex and the later study visit (at 24-28 weeks gestation) showed more positive associations compared to male fetal sex and the earlier study visit (16-20 weeks gestation). Our results suggest that phenols and parabens may disrupt inflammatory processes pertaining to uterine remodeling and endothelial function, with important implications for pregnancy outcomes. More research is needed to further understand maternal inflammatory status in an effort to improve reproductive and developmental outcomes.


Subject(s)
Parabens , Phenol , Pregnancy , Male , Female , Humans , Parabens/analysis , Puerto Rico/epidemiology , Phenols , C-Reactive Protein , Inflammation/chemically induced
13.
Free Radic Biol Med ; 213: 222-232, 2024 03.
Article in English | MEDLINE | ID: mdl-38262546

ABSTRACT

BACKGROUND: Inflammation and oxidative stress are critical to pregnancy, but most human study has focused on downstream, non-causal indicators. Oxylipins are lipid mediators of inflammation and oxidative stress that act through many biological pathways. Our aim was to characterize predictors of circulating oxylipin concentrations based on maternal characteristics. METHODS: Our study was conducted among 901 singleton pregnancies in the LIFECODES Fetal Growth Study, a nested case-cohort with recruitment from 2007 to 2018. We measured a targeted panel of oxylipins in early pregnancy plasma and urine samples from several biosynthetic pathways, defined by the polyunsaturated fatty acid (PUFA) precursor and enzyme group. We evaluated levels across predictors, including characteristics of participants' pregnancy, socioeconomic determinants, and obstetric and medical history. RESULTS: Current pregnancy and sociodemographic characteristics were the most important predictors of circulating oxylipins concentrations. Plasma oxylipins were lower and urinary oxylipins higher for participants with a later gestational age at sampling (13-23 weeks), higher prepregnancy BMI (obesity class I, II, or III), Black or Hispanic race and ethnicity, and lower socioeconomic status (younger age, lower education, and uninsured). For example, compared to those with normal or underweight prepregnancy BMI, participants with class III prepregnancy obesity had 45-46% lower plasma epoxy-eicosatrienoic acids, the anti-inflammatory oxylipins produced from arachidonic acid (AA) by cytochrome P450, and had 81% higher urinary 15-series F2-isoprostanes, an indicator of oxidative stress produced from non-enzymatic AA oxidation. Similarly, in urine, Black participants had 92% higher prostaglandin E2 metabolite, a pro-inflammatory oxylipin, and 41% higher 5-series F2-isoprostane, an oxidative stress indicator. CONCLUSIONS: In this large pregnancy study, we found that circulating levels of oxylipins were different for participants of lower socioeconomic status or of a systematically marginalized racial and ethnic groups. Given associations differed along biosynthetic pathways, results provide insight into etiologic links between maternal predictors and inflammation and oxidative stress.


Subject(s)
F2-Isoprostanes , Oxylipins , Pregnancy , Female , Humans , Infant , Fatty Acids, Unsaturated , Isoprostanes , Inflammation , Obesity , Arachidonic Acid , Oxidative Stress
14.
Environ Int ; 183: 108378, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38181479

ABSTRACT

BACKGROUND: Synthetic chemicals are increasingly being recognized for potential independent contributions to preterm birth (PTB) and low birth weight (LBW). Bisphenols, parabens, and triclosan are consumer product chemicals that act via similar mechanisms including estrogen, androgen, and thyroid disruption and oxidative stress. Multiple cohort studies have endeavored to examine effects on birth outcomes, and systematic reviews have been limited due to measurement of 1-2 spot samples during pregnancy and limited diversity of populations. OBJECTIVE: To study the effects of prenatal phenols and parabens on birth size and gestational age (GA) in 3,619 mother-infant pairs from 11 cohorts in the NIH Environmental influences on Child Health Outcomes program. RESULTS: While many associations were modest and statistically imprecise, a 1-unit increase in log10 pregnancy averaged concentration of benzophenone-3 and methylparaben were associated with decreases in birthweight, birthweight adjusted for gestational age and SGA. Increases in the odds of being SGA were 29% (95% CI: 5%, 58%) and 32% (95% CI: 3%, 70%), respectively. Bisphenol S in third trimester was also associated with SGA (OR 1.52, 95% CI 1.08, 2.13). Associations of benzophenone-3 and methylparaben with PTB and LBW were null. In addition, a 1-unit increase in log10 pregnancy averaged concentration of 2,4-dichlorophenol was associated with 43% lower (95% CI: -67%, -2%) odds of low birthweight; the direction of effect was the same for the highly correlated 2,5-dichlorophenol, but with a smaller magnitude (-29%, 95% CI: -53%, 8%). DISCUSSION: In a large and diverse sample generally representative of the United States, benzophenone-3 and methylparaben were associated with lower birthweight as well as birthweight adjusted for gestational age and higher odds of SGA, while 2,4-dichlorophenol. These associations with smaller size at birth are concerning in light of the known consequences of intrauterine growth restriction for multiple important health outcomes emerging later in life.


Subject(s)
Benzophenones , Chlorophenols , Parabens , Premature Birth , Pregnancy , Child , Female , Humans , Infant, Newborn , United States , Parabens/analysis , Birth Weight , Phenol , Phenols/analysis
15.
Environ Health Perspect ; 132(1): 17004, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38262621

ABSTRACT

BACKGROUND: Widespread exposure to organophosphate ester (OPE) flame retardants with potential reproductive toxicity raises concern regarding the impacts of gestational exposure on birth outcomes. Previous studies of prenatal OPE exposure and birth outcomes had limited sample sizes, with inconclusive results. OBJECTIVES: We conducted a collaborative analysis of associations between gestational OPE exposures and adverse birth outcomes and tested whether associations were modified by sex. METHODS: We included 6,646 pregnant participants from 16 cohorts in the Environmental influences on Child Health Outcomes (ECHO) Program. Nine OPE biomarkers were quantified in maternal urine samples collected primarily during the second and third trimester and modeled as log2-transformed continuous, categorized (high/low/nondetect), or dichotomous (detect/nondetect) variables depending on detection frequency. We used covariate-adjusted linear, logistic, and multinomial regression with generalized estimating equations, accounting for cohort-level clustering, to estimate associations of OPE biomarkers with gestational length and birth weight outcomes. Secondarily, we assessed effect modification by sex. RESULTS: Three OPE biomarkers [diphenyl phosphate (DPHP), a composite of dibutyl phosphate and di-isobutyl phosphate (DBUP/DIBP), and bis(1,3-dichloro-2-propyl) phosphate] were detected in >85% of participants. In adjusted models, DBUP/DIBP [odds ratio (OR) per doubling=1.07; 95% confidence interval (CI): 1.02, 1.12] and bis(butoxyethyl) phosphate (OR for high vs. nondetect=1.25; 95% CI: 1.06, 1.46), but not other OPE biomarkers, were associated with higher odds of preterm birth. We observed effect modification by sex for associations of DPHP and high bis(2-chloroethyl) phosphate with completed gestational weeks and odds of preterm birth, with adverse associations among females. In addition, newborns of mothers with detectable bis(1-chloro-2-propyl) phosphate, bis(2-methylphenyl) phosphate, and dipropyl phosphate had higher birth weight-for-gestational-age z-scores (ß for detect vs. nondetect=0.04-0.07); other chemicals showed null associations. DISCUSSION: In the largest study to date, we find gestational exposures to several OPEs are associated with earlier timing of birth, especially among female neonates, or with greater fetal growth. https://doi.org/10.1289/EHP13182.


Subject(s)
Biphenyl Compounds , Flame Retardants , Premature Birth , Infant, Newborn , Child , Pregnancy , Humans , Female , Birth Weight , Phosphates , Fetal Development , Organophosphates , Biomarkers , Outcome Assessment, Health Care , Esters
16.
Environ Res ; 246: 118114, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38211716

ABSTRACT

INTRODUCTION: N-(phosphonomethyl)glycine, or glyphosate, is a non-selective systemic herbicide widely used in agricultural, industrial, and residential settings since 1974. Glyphosate exposure has been inconsistently linked to neurotoxicity in animals, and studies of effects of gestational exposure among humans are scarce. In this study we investigated relationships between prenatal urinary glyphosate analytes and early childhood neurodevelopment. METHODS: Mother-child pairs from the PROTECT-CRECE birth cohort in Puerto Rico with measures for both maternal urinary glyphosate analytes and child neurodevelopment were included for analysis (n = 143). Spot urine samples were collected 1-3 times throughout pregnancy and analyzed for glyphosate and aminomethylphosphonic acid (AMPA), an environmental degradant of glyphosate. Child neurodevelopment was assessed at 6, 12, and 24 months using the Battelle Developmental Inventory, 2nd edition Spanish (BDI-2), which provides scores for adaptive, personal-social, communication, motor, and cognitive domains. We used multivariable linear regression to examine associations between the geometric mean of maternal urinary glyphosate analytes across pregnancy and BDI-2 scores at each follow-up. Results were expressed as percent change in BDI-2 score per interquartile range increase in exposure. RESULTS: Prenatal AMPA concentrations were negatively associated with communication domain at 12 months (%change = -5.32; 95%CI: 9.04, -1.61; p = 0.007), and communication subdomain scores at 12 and 24 months. At 24 months, four BDI-2 domains were associated with AMPA: adaptive (%change = -3.15; 95%CI: 6.05, -0.25; p = 0.038), personal-social (%change = -4.37; 95%CI: 7.48, -1.26; p = 0.008), communication (%change = -7.00; 95%CI: 11.75, -2.26; p = 0.005), and cognitive (%change = -4.02; 95%CI: 6.72, -1.32; p = 0.005). Similar trends were observed with GLY concentrations, but most confidence intervals include zero. We found no significant associations at 6 months. CONCLUSIONS: Our results suggest that gestational exposure to glyphosate is associated with adverse early neurodevelopment, with more pronounced delays at 24 months. Given glyphosate's wide usage, further investigation into the impact of gestational glyphosate exposure on neurodevelopment is warranted.


Subject(s)
Birth Cohort , Glyphosate , Pregnancy , Female , Humans , Child, Preschool , Puerto Rico , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid , Glycine/toxicity , Glycine/urine
17.
Metabolomics ; 20(1): 16, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267770

ABSTRACT

INTRODUCTION: Meta-analyses across diverse independent studies provide improved confidence in results. However, within the context of metabolomic epidemiology, meta-analysis investigations are complicated by differences in study design, data acquisition, and other factors that may impact reproducibility. OBJECTIVE: The objective of this study was to identify maternal blood metabolites during pregnancy (> 24 gestational weeks) related to offspring body mass index (BMI) at age two years through a meta-analysis framework. METHODS: We used adjusted linear regression summary statistics from three cohorts (total N = 1012 mother-child pairs) participating in the NIH Environmental influences on Child Health Outcomes (ECHO) Program. We applied a random-effects meta-analysis framework to regression results and adjusted by false discovery rate (FDR) using the Benjamini-Hochberg procedure. RESULTS: Only 20 metabolites were detected in all three cohorts, with an additional 127 metabolites detected in two of three cohorts. Of these 147, 6 maternal metabolites were nominally associated (P < 0.05) with offspring BMI z-scores at age 2 years in a meta-analytic framework including at least two studies: arabinose (Coefmeta = 0.40 [95% CI 0.10,0.70], Pmeta = 9.7 × 10-3), guanidinoacetate (Coefmeta = - 0.28 [- 0.54, - 0.02], Pmeta = 0.033), 3-ureidopropionate (Coefmeta = 0.22 [0.017,0.41], Pmeta = 0.033), 1-methylhistidine (Coefmeta = - 0.18 [- 0.33, - 0.04], Pmeta = 0.011), serine (Coefmeta = - 0.18 [- 0.36, - 0.01], Pmeta = 0.034), and lysine (Coefmeta = - 0.16 [- 0.32, - 0.01], Pmeta = 0.044). No associations were robust to multiple testing correction. CONCLUSIONS: Despite including three cohorts with large sample sizes (N > 100), we failed to identify significant metabolite associations after FDR correction. Our investigation demonstrates difficulties in applying epidemiological meta-analysis to clinical metabolomics, emphasizes challenges to reproducibility, and highlights the need for standardized best practices in metabolomic epidemiology.


Subject(s)
Lysine , Metabolomics , Child , Female , Pregnancy , Humans , Child, Preschool , Body Mass Index , Reproducibility of Results , Linear Models
18.
JAMA Psychiatry ; 81(1): 67-76, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37728908

ABSTRACT

Importance: Postpartum depression (PPD) affects up to 20% of childbearing individuals, and a significant limitation in reducing its morbidity is the difficulty in modifying established risk factors. Exposure to synthetic environmental chemicals found in plastics and personal care products, such as phenols, phthalates, and parabens, are potentially modifiable and plausibly linked to PPD and have yet to be explored. Objective: To evaluate associations of prenatal exposure to phenols, phthalates, parabens, and triclocarban with PPD symptoms. Design, Setting, and Participants: This was a prospective cohort study from 5 US sites, conducted from 2006 to 2020, and included pooled data from 5 US birth cohorts from the National Institutes of Health Environmental Influences on Child Health Outcomes (ECHO) consortium. Participants were pregnant individuals with data on urinary chemical concentrations (phenols, phthalate metabolites, parabens, or triclocarban) from at least 1 time point in pregnancy and self-reported postnatal depression screening assessment collected between 2 weeks and 12 months after delivery. Data were analyzed from February to May 2022. Exposures: Phenols (bisphenols and triclosan), phthalate metabolites, parabens, and triclocarban measured in prenatal urine samples. Main Outcomes and Measures: Depression symptom scores were assessed using the Edinburgh Postnatal Depression Scale (EPDS) or the Center for Epidemiologic Studies Depression Scale (CES-D), harmonized to the Patient-Reported Measurement Information System (PROMIS) Depression scale. Measures of dichotomous PPD were created using both sensitive (EPDS scores ≥10 and CES-D scores ≥16) and specific (EPDS scores ≥13 and CES-D scores ≥20) definitions. Results: Among the 2174 pregnant individuals eligible for analysis, nearly all (>99%) had detectable levels of several phthalate metabolites and parabens. PPD was assessed a mean (SD) of 3 (2.5) months after delivery, with 349 individuals (16.1%) and 170 individuals (7.8%) screening positive for PPD using the sensitive and specific definitions, respectively. Linear regression results of continuous PROMIS depression T scores showed no statistically significant associations with any chemical exposures. Models examining LMW and HMW phthalates and di (2-ethylhexyl) phthalate had estimates in the positive direction whereas all others were negative. A 1-unit increase in log-transformed LMW phthalates was associated with a 0.26-unit increase in the PROMIS depression T score (95% CI, -0.01 to 0.53; P = .06). This corresponded to an odds ratio (OR) of 1.08 (95% CI, 0.98-1.19) when modeling PPD as a dichotomous outcome and using the sensitive PPD definition. HMW phthalates were associated with increased odds of PPD (OR, 1.11; 95% CI, 1.00-1.23 and OR, 1.10; 95% CI, 0.96-1.27) for the sensitive and specific PPD definitions, respectively. Sensitivity analyses produced stronger results. Conclusions and Relevance: Phthalates, ubiquitous chemicals in the environment, may be associated with PPD and could serve as important modifiable targets for preventive interventions. Future studies are needed to confirm these observations.


Subject(s)
Depression, Postpartum , Diethylhexyl Phthalate , Prenatal Exposure Delayed Effects , Pregnancy , Child , Female , Humans , Depression, Postpartum/diagnosis , Depression, Postpartum/epidemiology , Prospective Studies , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/diagnosis , Parabens/adverse effects , Parabens/analysis , Phenols/analysis , Phenols/urine , Environmental Exposure
19.
Pediatrics ; 153(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38111349

ABSTRACT

OBJECTIVES: Breastfeeding practices may protect against offspring obesity, but this relationship is understudied among women with obesity. We describe the associations between breastfeeding practices and child BMI for age z-score (BMIz), stratified by maternal BMI. METHODS: We analyzed 8134 dyads from 21 cohorts in the Environmental Influences on Child Health Outcomes Program. Dyads with data for maternal pre-pregnancy BMI, infant feeding practices, and ≥1 child BMI assessment between the ages of 2 and 6 years were included. The associations between breastfeeding practices and continuous child BMIz were assessed by using multivariable linear mixed models. RESULTS: Maternal pre-pregnancy BMI category prevalence was underweight: 2.5%, healthy weight: 45.8%, overweight: 26.0%, and obese: 25.6%. Median child ages at the cessation of any breastfeeding and exclusive breastfeeding across the 4 BMI categories were 19, 26, 24, and 17 weeks and 12, 20, 17, and 12 weeks, respectively. Results were in the hypothesized directions for BMI categories. Three months of any breastfeeding was associated with a lower BMIz among children whose mothers were a healthy weight (-0.02 [-0.04 to 0.001], P = .06), overweight (-0.04 [-0.07 to -0.004], P = .03), or obese (-0.04 [-0.07 to -0.006], P = .02). Three months of exclusive breastfeeding was associated with a lower BMIz among children whose mothers were a healthy weight (-0.06 [-0.10 to -0.02], P = .002), overweight (-0.05 [-0.10 to 0.005], P = .07), or obese (-0.08 [-0.12 to -0.03], P = .001). CONCLUSIONS: Human milk exposure, regardless of maternal BMI category, was associated with a lower child BMIz in the Environmental Influences on Child Health Outcomes cohorts, supporting breastfeeding recommendations as a potential strategy for decreasing the risk of offspring obesity.


Subject(s)
Breast Feeding , Overweight , Infant , Pregnancy , Child , Female , Humans , Child, Preschool , Overweight/epidemiology , Body Mass Index , Obesity/epidemiology , Mothers
20.
Article in English | MEDLINE | ID: mdl-38063534

ABSTRACT

Phthalate use and the concentrations of their metabolites in humans vary by geographic region, race, ethnicity, sex, product use and other factors. Exposure during pregnancy may be associated with detrimental reproductive and developmental outcomes. No studies have evaluated the predictors of exposure to a wide range of phthalate metabolites in a large, diverse population. We examined the determinants of phthalate metabolites in a cohort of racially/ethnically diverse nulliparous pregnant women. We report on urinary metabolites of nine parent phthalates or replacement compounds-Butyl benzyl phthalate (BBzP), Diisobutyl phthalate (DiBP), Diethyl phthalate (DEP), Diisononyl phthalate (DiNP), D-n-octyl phthalate (DnOP), Di-2-ethylhexyl terephthalate (DEHTP), Di-n/i-butyl phthalate (DnBP), Di-isononyl phthalate (DiNP) and Di-(2-ethylhexyl) phthalate (DEHP) from urine collected up to three times from 953 women enrolled in the Nulliparous Mothers To Be Study. Phthalate metabolites were adjusted for specific gravity. Generalized estimating equations (GEEs) were used to identify the predictors of each metabolite. Overall predictors include age, race and ethnicity, education, BMI and clinical site of care. Women who were Non-Hispanic Black, Hispanic or Asian, obese or had lower levels of education had higher concentrations of selected metabolites. These findings indicate exposure patterns that require policies to reduce exposure in specific subgroups.


Subject(s)
Environmental Pollutants , Phthalic Acids , Humans , Female , Pregnancy , United States , Environmental Exposure , Environmental Pollutants/urine , Pregnant Women , Phthalic Acids/urine , Parity
SELECTION OF CITATIONS
SEARCH DETAIL
...