Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 113(16): 4512-7, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-27044085

ABSTRACT

In the mammalian suprachiasmatic nucleus (SCN), noisy cellular oscillators communicate within a neuronal network to generate precise system-wide circadian rhythms. Although the intracellular genetic oscillator and intercellular biochemical coupling mechanisms have been examined previously, the network topology driving synchronization of the SCN has not been elucidated. This network has been particularly challenging to probe, due to its oscillatory components and slow coupling timescale. In this work, we investigated the SCN network at a single-cell resolution through a chemically induced desynchronization. We then inferred functional connections in the SCN by applying the maximal information coefficient statistic to bioluminescence reporter data from individual neurons while they resynchronized their circadian cycling. Our results demonstrate that the functional network of circadian cells associated with resynchronization has small-world characteristics, with a node degree distribution that is exponential. We show that hubs of this small-world network are preferentially located in the central SCN, with sparsely connected shells surrounding these cores. Finally, we used two computational models of circadian neurons to validate our predictions of network structure.


Subject(s)
Circadian Clocks/physiology , Nerve Net/metabolism , Suprachiasmatic Nucleus/metabolism , Animals , Genes, Reporter , Mice, Transgenic , Nerve Net/cytology , Suprachiasmatic Nucleus/cytology
2.
Proc Natl Acad Sci U S A ; 110(46): E4355-61, 2013 Nov 12.
Article in English | MEDLINE | ID: mdl-24167276

ABSTRACT

Shift work or transmeridian travel can desynchronize the body's circadian rhythms from local light-dark cycles. The mammalian suprachiasmatic nucleus (SCN) generates and entrains daily rhythms in physiology and behavior. Paradoxically, we found that vasoactive intestinal polypeptide (VIP), a neuropeptide implicated in synchrony among SCN cells, can also desynchronize them. The degree and duration of desynchronization among SCN neurons depended on both the phase and the dose of VIP. A model of the SCN consisting of coupled stochastic cells predicted both the phase- and the dose-dependent response to VIP and that the transient phase desynchronization, or "phase tumbling", could arise from intrinsic, stochastic noise in small populations of key molecules (notably, Period mRNA near its daily minimum). The model also predicted that phase tumbling following brief VIP treatment would accelerate entrainment to shifted environmental cycles. We tested this using a prepulse of VIP during the day before a shift in either a light cycle in vivo or a temperature cycle in vitro. Although VIP during the day does not shift circadian rhythms, the VIP pretreatment approximately halved the time required for mice to reentrain to an 8-h shifted light schedule and for SCN cultures to reentrain to a 10-h shifted temperature cycle. We conclude that VIP below 100 nM synchronizes SCN cells and above 100 nM reduces synchrony in the SCN. We show that exploiting these mechanisms that transiently reduce cellular synchrony before a large shift in the schedule of daily environmental cues has the potential to reduce jet lag.


Subject(s)
Biological Clocks/physiology , Circadian Rhythm/physiology , Models, Biological , Signal Transduction/physiology , Suprachiasmatic Nucleus/physiology , Vasoactive Intestinal Peptide/metabolism , Animals , Biological Clocks/drug effects , Circadian Rhythm/drug effects , Dose-Response Relationship, Drug , Luminescent Measurements , Male , Mice , Motor Activity/physiology , Period Circadian Proteins/metabolism , Photoperiod , Temperature , Vasoactive Intestinal Peptide/pharmacology
3.
J Biol Rhythms ; 26(4): 353-62, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21775294

ABSTRACT

Cells in the suprachiasmatic nucleus (SCN) display remarkable precision, while either physically or chemically decoupling these cells from each other leads to a dramatic increase in period-to-period variability. Where previous studies have classified cells as either arrhythmic or circadian, our wavelet analysis reveals that individual cells, when removed from network interactions, intermittently express circadian and/or longer infradian periods. We reproduce the characteristic period distribution of uncoupled SCN cells with a stochastic model of the uncoupled SCN cell near a bifurcation in Bmal1 transcription repression. This suggests that the uncoupled cells may be switching between 2 oscillatory mechanisms: the indirect negative feedback of protein complex PER-CRY on the expression of Per and Cry genes, and the negative feedback of CLOCK-BMAL1 on the expression of the Bmal1 gene. The model is particularly sensitive near this bifurcation point, with only a small change in Bmal1 transcription repression needed to switch from the stable precision of coupled SCN cells to the unstable oscillations of decoupled individual cells, making this rate constant, an ideal target for cell signaling in the SCN.


Subject(s)
Circadian Rhythm , Neurons/physiology , Suprachiasmatic Nucleus/physiology , Animals , Models, Theoretical , Stochastic Processes , Suprachiasmatic Nucleus/cytology
4.
J R Soc Interface ; 5 Suppl 1: S17-28, 2008 Aug 06.
Article in English | MEDLINE | ID: mdl-18426774

ABSTRACT

Systems theoretic tools (i.e. mathematical modelling, control, and feedback design) advance the understanding of robust performance in complex biological networks. We highlight phase entrainment as a key performance measure used to investigate dynamics of a single deterministic circadian oscillator for the purpose of generating insight into the behaviour of a population of (synchronized) oscillators. More specifically, the analysis of phase characteristics may facilitate the identification of appropriate coupling mechanisms for the ensemble of noisy (stochastic) circadian clocks. Phase also serves as a critical control objective to correct mismatch between the biological clock and its environment. Thus, we introduce methods of investigating synchrony and entrainment in both stochastic and deterministic frameworks, and as a property of a single oscillator or population of coupled oscillators.


Subject(s)
Circadian Rhythm/physiology , Models, Biological , Animals , Drosophila melanogaster/physiology , Models, Neurological , Neurons/physiology , Signal Transduction , Stochastic Processes
5.
Cell ; 129(3): 605-16, 2007 May 04.
Article in English | MEDLINE | ID: mdl-17482552

ABSTRACT

Molecular mechanisms of the mammalian circadian clock have been studied primarily by genetic perturbation and behavioral analysis. Here, we used bioluminescence imaging to monitor Per2 gene expression in tissues and cells from clock mutant mice. We discovered that Per1 and Cry1 are required for sustained rhythms in peripheral tissues and cells, and in neurons dissociated from the suprachiasmatic nuclei (SCN). Per2 is also required for sustained rhythms, whereas Cry2 and Per3 deficiencies cause only period length defects. However, oscillator network interactions in the SCN can compensate for Per1 or Cry1 deficiency, preserving sustained rhythmicity in mutant SCN slices and behavior. Thus, behavior does not necessarily reflect cell-autonomous clock phenotypes. Our studies reveal previously unappreciated requirements for Per1, Per2, and Cry1 in sustaining cellular circadian rhythmicity and demonstrate that SCN intercellular coupling is essential not only to synchronize component cellular oscillators but also for robustness against genetic perturbations.


Subject(s)
Biological Clocks/physiology , Cell Cycle Proteins/physiology , Circadian Rhythm/physiology , Flavoproteins/physiology , Nuclear Proteins/physiology , Suprachiasmatic Nucleus/physiology , Transcription Factors/physiology , Animals , Cell Cycle Proteins/genetics , Cells, Cultured , Cryptochromes , Fibroblasts , Flavoproteins/genetics , Mice , Motor Activity , Mutation , Neurons/metabolism , Nuclear Proteins/genetics , Period Circadian Proteins , Suprachiasmatic Nucleus/cytology , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...