Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Immunol ; 40(8): 2236-47, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20458705

ABSTRACT

Most studies investigating the function of IL-23 have concluded that it promotes IL-17-secreting T cells. Although some reports have also characterized IL-23 as having redundant pro-inflammatory effects with IL-12, we have instead found that IL-23 antagonizes IL-12-induced secretion of IFN-γ. When splenocytes or purified populations of T cells were cultured with IL-23, IFN-γ secretion in response to IL-12 was dramatically reduced. The impact of IL-23 was most prominent in CD8(+) T cells, but was also observed in NK and CD4(+) T cells. Mechanistically, the IL-23 receptor was not required for this phenomenon, and IL-23 inhibited signaling through the IL-12 receptor by reducing IL-12-induced signal transducer and activator of transcription 4 (STAT4) phosphorylation. IL-23 was also able to reduce IFN-γ secretion by antagonizing endogenously produced IL-12 from Listeria monocytogenes (LM)-infected macrophages. In vivo, LM infection induced higher serum IFN-γ levels and a greater percentage of IFN-γ(+)CD8(+) T cells in IL-23p19-deficient mice as compared with WT mice. This increase in IFN-γ production coincided with increased LM clearance at days 2 and 3 post-infection. Our data suggest that IL-23 may be a key factor in determining the responsiveness of lymphocytes to IL-12 and their subsequent secretion of IFN-γ.


Subject(s)
Interferon-gamma/biosynthesis , Interleukin-12/antagonists & inhibitors , Interleukin-23/pharmacology , Listeriosis/immunology , Macrophages/metabolism , T-Lymphocytes/metabolism , Animals , Bacterial Load/genetics , Cells, Cultured , Down-Regulation , Immunomodulation , Interferon-gamma/genetics , Interferon-gamma/metabolism , Interleukin-12/immunology , Interleukin-12/metabolism , Interleukin-23/genetics , Listeriosis/microbiology , Lymphocyte Activation/drug effects , Lymphocyte Activation/genetics , Macrophages/drug effects , Macrophages/immunology , Macrophages/microbiology , Macrophages/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Interleukin-12/metabolism , STAT4 Transcription Factor/metabolism , Signal Transduction , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/pathology
2.
J Immunol ; 183(12): 8026-34, 2009 Dec 15.
Article in English | MEDLINE | ID: mdl-19923464

ABSTRACT

Listeria monocytogenes (LM) is a Gram-positive, intracellular bacterium that can induce spontaneous abortion, septicemia, and meningitis. Although it is known that neutrophils are required for elimination of the bacteria and for survival of the host, the mechanisms governing the recruitment of neutrophils to LM-infected tissues are not fully understood. We demonstrate here that IL-23 and the IL-17 receptor A (IL-17RA), which mediates both IL-17A and IL-17F signaling, are necessary for resistance against systemic LM infection. LM-infected IL-23p19 knockout (KO) mice have decreased production of IL-17A and IL-17F, while IFN-gamma production is not altered by the lack of IL-23. LM induces the production of IL-17A from gammadelta T cells, but not CD4, CD8, or NK cells. Furthermore, a lack of efficient neutrophil recruitment to the liver is evident in both IL-23p19 KO and IL-17RA KO mice during LM infection. Immunocytochemical analysis of infected livers revealed that neutrophils were able to localize with LM in IL-23p19 KO and IL-17RA KO mice, indicating that IL-23 and IL-17RA do not regulate the precise localization of neutrophils with LM. The importance of IL-23-induced IL-17A was demonstrated by injecting IL-23p19 KO mice with recombinant IL-17A. These mice had reduced LM bacterial burdens compared with IL-23p19 KO mice that did not receive IL-17A. These results indicate that during LM infection, IL-23 regulates the production of IL-17A and IL-17F from gammadelta T cells, resulting in optimal liver neutrophil recruitment and enhanced bacterial clearance.


Subject(s)
Interleukin-23/physiology , Listeriosis/immunology , Listeriosis/prevention & control , Animals , Interleukin-17/deficiency , Interleukin-17/genetics , Interleukin-17/physiology , Interleukin-23/genetics , Interleukin-23 Subunit p19/deficiency , Interleukin-23 Subunit p19/genetics , Interleukin-23 Subunit p19/physiology , Listeria monocytogenes/immunology , Listeriosis/microbiology , Liver/immunology , Liver/microbiology , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophil Infiltration/genetics , Neutrophil Infiltration/immunology , Receptors, Antigen, T-Cell, gamma-delta/biosynthesis , Receptors, Interleukin-17/deficiency , Receptors, Interleukin-17/genetics , Receptors, Interleukin-17/physiology , Signal Transduction/genetics , Signal Transduction/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
3.
Eur J Immunol ; 39(2): 426-38, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19180464

ABSTRACT

Immune responses to pathogens occur within the context of current and previous infections. Cross protection refers to the phenomena where infection with a particular pathogen provides enhanced resistance to a subsequent unrelated pathogen in an antigen-independent manner. Proposed mechanisms of antigen-independent cross protection have involved the secretion of IFN-gamma, which activates macrophages, thus providing enhanced innate immunity against the secondary viral or bacterial pathogen. Here we provide evidence that a primary infection with the chronic respiratory pathogen, Mycoplasma pulmonis, provides a novel form of cross protection against a secondary infection with Listeria monocytogenes that is not mediated by IFN-gamma, but instead relies upon IL-17 and mobilization of neutrophils. Mice infected with M. pulmonis have enhanced clearance of L. monocytogenes from the spleen and liver, which is associated with increased numbers of Gr-1(+)CD11b(+) cells and higher levels of IL-17. This enhanced clearance of L. monocytogenes was absent in mice depleted of Gr-1(+) cells or in mice deficient in the IL-17 receptor. Additionally, both the IL-17 receptor and neutrophils were essential for optimal clearance of M. pulmonis. Thus, a natural component of the immune response directed against M. pulmonis was able to enhance clearance of L. monocytogenes.


Subject(s)
Interleukin-17/immunology , Listeria monocytogenes/immunology , Listeriosis/immunology , Mycoplasma Infections/immunology , Mycoplasma pulmonis/immunology , Animals , Female , Interferon-gamma/immunology , Interferon-gamma/metabolism , Interleukin-17/metabolism , Listeriosis/microbiology , Liver/immunology , Liver/microbiology , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mycoplasma Infections/microbiology , Neutrophils/immunology , Neutrophils/metabolism , Receptors, Interleukin-17/genetics , Receptors, Interleukin-17/immunology , Receptors, Interleukin-17/metabolism , Spleen/immunology , Spleen/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...