Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Intell Neurosci ; 2022: 9653513, 2022.
Article in English | MEDLINE | ID: mdl-36105634

ABSTRACT

The capacity to carry out one's regular tasks is affected to varying degrees by hearing difficulties. Poorer understanding, slower learning, and an overall reduction in efficiency in academic endeavours are just a few of the negative impacts of hearing impairments on children's performance, which may range from mild to severe. A significant factor in determining whether or not there will be a decrease in performance is the kind and source of impairment. Research has shown that the Artificial Neural Network technique is capable of modelling both linear and nonlinear solution surfaces in a trustworthy way, as demonstrated in previous studies. To improve the precision with which hearing impairment challenges are diagnosed, a neural network backpropagation approach has been developed with the purpose of fine-tuning the diagnostic process. In particular, it highlights the vital role performed by medical informatics in supporting doctors in the identification of diseases as well as the formulation of suitable choices via the use of data management and knowledge discovery. As part of the intelligent control method, it is proposed in this research to construct a Histogram Equalization (HE)-based Adaptive Center-Weighted Median (ACWM) filter, which is then used to segment/detect the OM in tympanic membrane images using different segmentation methods in order to minimise noise and improve the image quality. A tympanic membrane dataset, which is freely accessible, was used in all experiments.


Subject(s)
Algorithms , Otitis , Child , Humans , Neural Networks, Computer
2.
Comput Intell Neurosci ; 2022: 2613075, 2022.
Article in English | MEDLINE | ID: mdl-36105637

ABSTRACT

An adaptive fuzzy sliding control (AFSMC) approach is adopted in this paper to address the problem of angular position control and vibration suppression of rotary flexible joint systems. AFSMC consists of fuzzy-based singleton control action and switching control law. By adjusting fuzzy parameters with the self-learning ability to discard system nonlinearities and uncertainties, singleton control based on fuzzy approximation theory can estimate the perfect control law of feedback linearization. To enhance robustness, an additional switching control law is incorporated to reduce the approximation error between the derived singleton control action and the perfect control law of feedback linearization. AFSMC's closed-loop stability will be demonstrated via sliding surface and Lyapunov function analysis of error function. In order to demonstrate the effectiveness of the AFSMC in tracking performance as well as its ability to respond to model uncertainties and external perturbations, simulations are carried out using Simulink and Matlab in order to demonstrate how well it adapts to these situations. Based on these results, it can be concluded that the AFSMC performs satisfactorily in terms of tracking.


Subject(s)
Feedback , Uncertainty
SELECTION OF CITATIONS
SEARCH DETAIL
...