Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 660: 756-770, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38271811

ABSTRACT

Despite the growing emphasis on eco-friendly nanomaterials as energy harvesters, scientists are actively searching for metal-free photocatalysts to be used in environmental remediation strategies. Developing renewable resource-based carbon quantum dots (CQDs) as the sole photocatalyst to harvest visible light for efficient pollutant degradation is crucial yet challenging, particularly for addressing the escalating issue of water deterioration. Moreover, the photocatalytic decomposition of H2O2 under visible light irradiation remains an arduous task. Based on this, we designed two types of CQDs, C-CQDs (carboxylic-rich) and A-CQDs (amine-rich) with distinct molecular surfaces. Owing to the higher amount of upward band bending induced by amine-rich molecular surface, A-CQDs efficiently harvest the visible light and prevent recombination kinetics resulting in prolonged lifetimes (25 ps), and augmented charge carrier density (35.7 × 1018) of photoexcited charge carriers. A-CQDs enabled rapid visible-light-driven photolysis of H2O2 (k = 0.058 min-1) and produced higher quantity of •OH radicals (0.158 µmol/sec) for the mineralization of petroleum waste, BETX (i.e. Benzene, Ethylbenzene, Toluene and Xylene) (k = 0.017-0.026 min-1) and real textile wastewater (k = 0.026 min-1). To assess comparative toxicities of both remediated and non-remediated real wastewater samples in a time and dose depended manner, Drosophila melanogaster was used as a model organism. The findings unequivocally demonstrate the potential of remediated wastewater for watering urban forestry.

2.
BMC Plant Biol ; 23(1): 664, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38129793

ABSTRACT

BACKGROUND: Drought is one of the important abiotic stresses that can significantly reduce crop yields. In India, about 24% of Brassica juncea (Indian mustard) cultivation is taken up under rainfed conditions, leading to low yields due to moisture deficit stress. Hence, there is an urgent need to improve the productivity of mustard under drought conditions. In the present study, a set of 87 B. carinata-derived B. juncea introgression lines (ILs) was developed with the goal of creating drought-tolerant genotypes. METHOD: The experiment followed the augmented randomized complete block design with four blocks and three checks. ILs were evaluated for seed yield and its contributing traits under both rainfed and irrigated conditions in three different environments created by manipulating locations and years. To identify novel genes and alleles imparting drought tolerance, Quantitative Trait Loci (QTL) analysis was carried out. Genotyping-by-Sequencing (GBS) approach was used to construct the linkage map. RESULTS: The linkage map consisted of 5,165 SNP markers distributed across 18 chromosomes and spanning a distance of 1,671.87 cM. On average, there was a 3.09 cM gap between adjoining markers. A total of 29 additive QTLs were identified for drought tolerance; among these, 17 (58.6% of total QTLs detected) were contributed by B. carinata (BC 4), suggesting a greater contribution of B. carinata towards improving drought tolerance in the ILs. Out of 17 QTLs, 11 (64.7%) were located on the B genome, indicating more introgression segments on the B genome of B. juncea. Eight QTL hotspots, containing two or more QTLs, governing seed yield contributing traits, water use efficiency, and drought tolerance under moisture deficit stress conditions were identified. Seventeen candidate genes related to biotic and abiotic stresses, viz., SOS2, SOS2 like, NPR1, FAE1-KCS, HOT5, DNAJA1, NIA1, BRI1, RF21, ycf2, WRKY33, PAL, SAMS2, orf147, MAPK3, WRR1 and SUS, were reported in the genomic regions of identified QTLs. CONCLUSIONS: The significance of B. carinata in improving drought tolerance and WUE by introducing genomic segments in Indian mustard is well demonstrated. The findings also provide valuable insights into the genetic basis of drought tolerance in mustard and pave the way for the development of drought-tolerant varieties.


Subject(s)
Drought Resistance , Quantitative Trait Loci , Quantitative Trait Loci/genetics , Chromosome Mapping , Phenotype , Genotype , Mustard Plant/genetics
3.
Environ Res ; 231(Pt 2): 116181, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37207730

ABSTRACT

Developing an efficient heterogeneous photocatalyst for environmental remediation and treatment strategies using visible light harvesting processes is promising but challenging. Herein, Cd1-xCuxS materials have been synthesized and characterized by precise analytical tools. Cd1-xCuxS materials exhibited excellent photocatalytic activity for direct Red 23 (DR-23) dye degradation in visible light irradiation. The operational parameters, like dopant concentration, photocatalyst dose, pH, and initial concentration of dye were investigated during the process. The photocatalytic degradation process follows pseudo-first-order kinetics. As compared to other tested materials, 5% Cu doped CdS material revealed superior photocatalytic performance for the degradation of DR-23 (k = 13.96 × 10-3 min-1). Transient absorption spectroscopy, EIS, PL, and transient photocurrent indicated that adding copper to the CdS matrix improved the separation of photo-generated charge carriers by lowering the recombination rate. Spin-trapping experiments recognized the photodegradation primarily based on secondary redox products, i.e., hydroxyl and superoxide radicals. According to by Mott-Schottky curves, photocatalytic mechanism and photo-generated charge carrier density were elucidated regarding dopant-induced valence and conduction bands shifting. Thermodynamic probability of radical formation in line with the altered redox potentials by Cu doping has been discussed in the mechanism. The identification of intermediates by mass spectrometry study also showed a plausible breakdown mechanism for DR-23. Moreover, samples treated with nanophotocatalyst displayed excellent results when tested for water quality metrics such as DO, TDS, BOD, and COD. Developed nanophotocatalyst shows high recyclability with superior heterogeneous nature. 5% Cu-doped CdS also exhibit strong photocatalytic activity for the degradation of colourless pollutant bisphenol A (BPA) under visible light (k = 8.45 × 10-3 min-1). The results of this study offer exciting opportunities to alter semiconductors' electronic band structures for visible-light-induced photocatalytic activity for wastewater treatment.


Subject(s)
Copper , Nanopores , Copper/chemistry , Cadmium , Reactive Oxygen Species , Light , Recombination, Genetic , Catalysis
4.
Plants (Basel) ; 12(8)2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37111905

ABSTRACT

Interspecific hybridization resulted in the creation of B. juncea introgression lines (ILs) generated from B. carinata with increased productivity and adaptability. Forty ILs were crossed with their respective B. juncea recipient parents to generate introgression line hybrids (ILHs) and the common tester (SEJ 8) was used to generate test hybrids (THs). Mid-parent heterosis in ILHs and standard heterosis in THs were calculated for eight yield and yield-related traits. Heterotic genomic regions were dissected using ten ILs with significant mid-parent heterosis in ILHs and standard heterosis in THs for seed yield. A high level of heterosis for seed yield was contributed by 1000 seed weight (13.48%) in D31_ILHs and by total siliquae/plant (14.01%) and siliqua length (10.56%) in PM30_ILHs. The heterotic ILs of DRMRIJ 31 and Pusa Mustard 30 were examined using polymorphic SNPs between the parents, and a total of 254 and 335 introgressed heterotic segments were identified, respectively. This investigation discovered potential genes, viz., PUB10, glutathione S transferase, TT4, SGT, FLA3, AP2/ERF, SANT4, MYB, and UDP-glucosyl transferase 73B3 that were previously reported to regulate yield-related traits. The heterozygosity of the FLA3 gene significantly improved siliqua length and seeds per siliqua in ILHs of Pusa Mustard 30. This research proved that interspecific hybridization is an effective means of increasing the diversity of cultivated species by introducing new genetic variants and improving the level of heterosis.

5.
ACS Appl Mater Interfaces ; 15(5): 6970-6981, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36701196

ABSTRACT

Despite the modern boost, developing a new photocatalytic system for the reduction of aldehydes is still challenging due to their high negative reduction potential. Herein, we have used a metal-free photoinduced electron-transfer system based on a cheap and readily available organic dye eosin Y (EY), graphene oxide (GO), and ammonium oxalate (AO) for photocatalytic reduction of structurally diverse aldehydes under sustainable conditions. The protocol shows remarkable selectivity for the photocatalytic reduction of aldehydes over ketones. The decisive interaction of GO and AO with the various states of EY (ground, singlet, triplet, and radical anions), which are responsible for the commencement of the reaction, was examined by various theoretical, optical, electrochemical, and photo-electrochemical studies. The synergetic system of GO, EY, and AO is appropriate for enhancing the separation efficiency of visible-light-induced charge carriers. GO nanosheets act as an electron reservoir to accept and transport photogenerated electrons from the photocatalytic system to the reactant. The reduction of the GO during the process ruled out the back transfer of photoexcited charges. Control experiments explained that the reaction involves two stages: electron transfer and protonation. This process eliminates the necessity of precious-metal-based photocatalysts or detrimental sacrificial agents and overcomes the redox potential limitations for the photoreduction of aldehydes.

6.
Plant Pathol J ; 36(2): 111-120, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32296291

ABSTRACT

Powdery mildew of Indian mustard (Brassica juncea), caused by Erysiphe cruciferarum, is emerging as major problem in India. All the Indian mustard cultivars presently grown in India are highly susceptible to powdery mildew and so far no resistance source has been reported. In this study, with an aim to identify resistant source, 1,020 Indian mustard accessions were evaluated against E. cruciferarum PMN isolate, at Wellington, The Nilgiris, Tamil Nadu, India under natural hot spot conditions. The study identified one accession (RDV 29) with complete resistance against E. cruciferarum PMN isolate for the first time, which was consistent in five independent evaluations. Genetic analysis of F1, F2 and backcross populations obtained from the cross RSEJ 775 (highly susceptible) × RDV 29 (highly resistant) for two season revealed that the resistance is governed by two genes with semi-dominant and gene dosage effect. Further, a new disease rating system using six scales (0, 1, 2, 3, 4, and 5) has also been proposed in this study to score powdery mildew based on progress of fungal growth in different plant parts of the F2 population. The outcome of this study viz. newly identified powdery mildew-resistant Indian mustard accession (RDV 29), information on inheritance of resistance and the newly developed disease rating scale will provide the base for development of powdery mildew-resistant cultivars of Indian mustard.

7.
Inorg Chem ; 59(3): 1928-1939, 2020 Feb 03.
Article in English | MEDLINE | ID: mdl-31944099

ABSTRACT

The development of an efficient blue phosphor with remarkable thermal stability required for high-quality white-light-emitting diodes (WLEDs) remains an exigent task and mainly concerned BaMgAl10O17:Eu2+ (BAM:Eu). Despite the outstanding performance of BAM:Eu, the reduction in luminescence efficiency under long-term operation results in numerous researches on new hosts having lattice rigidity with symmetrical coordination environment. Therefore, we have synthesized a competent blue-emitting Eu2+-activated Sr5SiO4Cl6 (SSC) phosphors. The admirable rigidity of these phosphors with three Sr polyhedra Sr(I)O9, Sr(II)O7, and Sr(III)O8 assessed from Rietveld refinement indicate the dense connectivity in the crystal structure, and the ab initio calculations further support the firm electronic band structure. The broad excitation from 250 to 450 nm suitably matches the absorption band of a near-UV (n-UV) LED chip. The phosphor exhibited bright blue emission with internal quantum yield and color purity > 90% which contribute to the slender fwhm of 33 nm. The first-principle calculation indicates the most stable site for Eu2+ substitution as Sr(III)O8, and the experimental results agreed with this fact as well. The synthesized phosphor displayed an excellent thermal stability which is superior to that of the commercial BAM:Eu phosphor. The excellent thermal stability may be owed to the highly symmetric coordination environment of Eu2+ in the SSC host that are revealed from the distortion and charge density distribution calculation by density functional theory. The blue phosphor was further utilized for WLEDs and displayed white light with a high color-rendering index and suitable correlated color temperature, which is ideal for practical applications in warm WLEDs.

SELECTION OF CITATIONS
SEARCH DETAIL
...