Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Exp Bot ; 75(8): 2545-2557, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38271585

ABSTRACT

Non-structural carbohydrates (NSCs) are building blocks for biomass and fuel metabolic processes. However, it remains unclear how tropical forests mobilize, export, and transport NSCs to cope with extreme droughts. We combined drought manipulation and ecosystem 13CO2 pulse-labeling in an enclosed rainforest at Biosphere 2, assessed changes in NSCs, and traced newly assimilated carbohydrates in plant species with diverse hydraulic traits and canopy positions. We show that drought caused a depletion of leaf starch reserves and slowed export and transport of newly assimilated carbohydrates below ground. Drought effects were more pronounced in conservative canopy trees with limited supply of new photosynthates and relatively constant water status than in those with continual photosynthetic supply and deteriorated water status. We provide experimental evidence that local utilization, export, and transport of newly assimilated carbon are closely coupled with plant water use in canopy trees. We highlight that these processes are critical for understanding and predicting tree resistance and ecosystem fluxes in tropical forest under drought.


Subject(s)
Carbon , Rainforest , Carbon/metabolism , Ecosystem , Droughts , Water/metabolism , Trees/metabolism , Carbohydrates , Plant Leaves/metabolism
3.
Rapid Commun Mass Spectrom ; 37(24): e9647, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-37953542

ABSTRACT

RATIONALE: The measurement of the stable carbon and oxygen isotope ratio of (atmospheric) carbon dioxide (CO2 ) is a useful technique for the investigation and identification of the sources and sinks of the most abundant greenhouse gases by far. For this reason, we are presenting a measuring system here that enables a wide range of users to carry out stable isotope analysis of atmospheric CO2 using off-the-bench hardware and software. METHODS: The fully automated system uses cryogenic and gas chromatographic separation to analyse CO2 from 12-mL whole air samples and consists of an autosampler, a Gasbench II (GB), a downstream cryo trap and a continuous flow gas interface feeding into a sector field mass spectrometer (GC Pal/GB/Cold Trap/ConFlo IV/DeltaV Plus). The evaluation of the system performance was based on the analysis of samples prepared from eight CO2 sources (four CO2 reference gases and four artificial air tanks). RESULTS: The overall measurement uncertainty (averaged single standard deviation (1σ) of measurement replicates from each CO2 source) in the determination of the carbon and oxygen isotope ratio was 0.04‰ and 0.09‰ (n = 24). Furthermore, we were able to show that the measurement data also allowed for the quantification of the CO2 mole fraction, with a precision of 1.2 µmol mol-1 in the analysis range of 400-500 µmol mol-1 . CONCLUSIONS: Our protocol provides a detailed description of the measurement set-up and the analysis procedure, how raw data should be evaluated and gives recommendations for sample preparation and sampling to enable a fully automated whole air sample analysis. The quantification limit of CO2 mole fractions and measurement precision for carbon and oxygen isotope ratios of CO2 should meet the requirements of a wide range of users.

5.
New Phytol ; 240(2): 565-576, 2023 10.
Article in English | MEDLINE | ID: mdl-37545200

ABSTRACT

Below and aboveground vegetation dynamics are crucial in understanding how climate warming may affect terrestrial ecosystem carbon cycling. In contrast to aboveground biomass, the response of belowground biomass to long-term warming has been poorly studied. Here, we characterized the impacts of decadal geothermal warming at two levels (on average +3.3°C and +7.9°C) on below and aboveground plant biomass stocks and production in a subarctic grassland. Soil warming did not change standing root biomass and even decreased fine root production and reduced aboveground biomass and production. Decadal soil warming also did not significantly alter the root-shoot ratio. The linear stepwise regression model suggested that following 10 yr of soil warming, temperature was no longer the direct driver of these responses, but losses of soil N were. Soil N losses, due to warming-induced decreases in organic matter and water retention capacity, were identified as key driver of the decreased above and belowground production. The reduction in fine root production was accompanied by thinner roots with increased specific root area. These results indicate that after a decade of soil warming, plant productivity in the studied subarctic grassland was affected by soil warming mainly by the reduction in soil N.


Subject(s)
Ecosystem , Tracheophyta , Soil , Grassland , Nitrogen/analysis , Climate Change , Biomass , Plants , Carbon
6.
Nat Commun ; 14(1): 5064, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37604817

ABSTRACT

Drought can affect the capacity of soils to emit and consume biogenic volatile organic compounds (VOCs). Here we show the impact of prolonged drought followed by rewetting and recovery on soil VOC fluxes in an experimental rainforest. Under wet conditions the rainforest soil acts as a net VOC sink, in particular for isoprenoids, carbonyls and alcohols. The sink capacity progressively decreases during drought, and at soil moistures below ~19%, the soil becomes a source of several VOCs. Position specific 13C-pyruvate labeling experiments reveal that soil microbes are responsible for the emissions and that the VOC production is higher during drought. Soil rewetting induces a rapid and short abiotic emission peak of carbonyl compounds, and a slow and long biotic emission peak of sulfur-containing compounds. Results show that, the extended drought periods predicted for tropical rainforest regions will strongly affect soil VOC fluxes thereby impacting atmospheric chemistry and climate.

7.
Glob Chang Biol ; 29(18): 5276-5291, 2023 09.
Article in English | MEDLINE | ID: mdl-37427494

ABSTRACT

Climate warming has been suggested to impact high latitude grasslands severely, potentially causing considerable carbon (C) losses from soil. Warming can also stimulate nitrogen (N) turnover, but it is largely unclear whether and how altered N availability impacts belowground C dynamics. Even less is known about the individual and interactive effects of warming and N availability on the fate of recently photosynthesized C in soil. On a 10-year geothermal warming gradient in Iceland, we studied the effects of soil warming and N addition on CO2 fluxes and the fate of recently photosynthesized C through CO2 flux measurements and a 13 CO2 pulse-labeling experiment. Under warming, ecosystem respiration exceeded maximum gross primary productivity, causing increased net CO2 emissions. N addition treatments revealed that, surprisingly, the plants in the warmed soil were N limited, which constrained primary productivity and decreased recently assimilated C in shoots and roots. In soil, microbes were increasingly C limited under warming and increased microbial uptake of recent C. Soil respiration was increased by warming and was fueled by increased belowground inputs and turnover of recently photosynthesized C. Our findings suggest that a decade of warming seemed to have induced a N limitation in plants and a C limitation by soil microbes. This caused a decrease in net ecosystem CO2 uptake and accelerated the respiratory release of photosynthesized C, which decreased the C sequestration potential of the grassland. Our study highlights the importance of belowground C allocation and C-N interactions in the C dynamics of subarctic ecosystems in a warmer world.


Subject(s)
Carbon , Ecosystem , Grassland , Carbon Dioxide , Nitrogen , Plants , Soil
8.
Nat Microbiol ; 8(8): 1480-1494, 2023 08.
Article in English | MEDLINE | ID: mdl-37524975

ABSTRACT

Drought impacts on microbial activity can alter soil carbon fate and lead to the loss of stored carbon to the atmosphere as CO2 and volatile organic compounds (VOCs). Here we examined drought impacts on carbon allocation by soil microbes in the Biosphere 2 artificial tropical rainforest by tracking 13C from position-specific 13C-pyruvate into CO2 and VOCs in parallel with multi-omics. During drought, efflux of 13C-enriched acetate, acetone and C4H6O2 (diacetyl) increased. These changes represent increased production and buildup of intermediate metabolites driven by decreased carbon cycling efficiency. Simultaneously,13C-CO2 efflux decreased, driven by a decrease in microbial activity. However, the microbial carbon allocation to energy gain relative to biosynthesis was unchanged, signifying maintained energy demand for biosynthesis of VOCs and other drought-stress-induced pathways. Overall, while carbon loss to the atmosphere via CO2 decreased during drought, carbon loss via efflux of VOCs increased, indicating microbially induced shifts in soil carbon fate.


Subject(s)
Bacteria , Carbon , Droughts , Rainforest , Soil Microbiology , Carbon/metabolism , Carbon Dioxide/metabolism , Soil/chemistry , Tropical Climate , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Biodiversity , Multiomics , Gene Expression Regulation, Bacterial
9.
Science ; 374(6574): 1514-1518, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34914503

ABSTRACT

Severe droughts endanger ecosystem functioning worldwide. We investigated how drought affects carbon and water fluxes as well as soil-plant-atmosphere interactions by tracing 13CO2 and deep water 2H2O label pulses and volatile organic compounds (VOCs) in an enclosed experimental rainforest. Ecosystem dynamics were driven by different plant functional group responses to drought. Drought-sensitive canopy trees dominated total fluxes but also exhibited the strongest response to topsoil drying. Although all canopy-forming trees had access to deep water, these reserves were spared until late in the drought. Belowground carbon transport was slowed, yet allocation of fresh carbon to VOCs remained high. Atmospheric VOC composition reflected increasing stress responses and dynamic soil-plant-atmosphere interactions, potentially affecting atmospheric chemistry and climate feedbacks. These interactions and distinct functional group strategies thus modulate drought impacts and ecosystem susceptibility to climate change.

10.
Glob Chang Biol ; 27(14): 3230-3243, 2021 07.
Article in English | MEDLINE | ID: mdl-33811716

ABSTRACT

Photosynthesis and soil respiration represent the two largest fluxes of CO2 in terrestrial ecosystems and are tightly linked through belowground carbon (C) allocation. Drought has been suggested to impact the allocation of recently assimilated C to soil respiration; however, it is largely unknown how drought effects are altered by a future warmer climate under elevated atmospheric CO2 (eT_eCO2 ). In a multifactor experiment on managed C3 grassland, we studied the individual and interactive effects of drought and eT_eCO2 (drought, eT_eCO2 , drought × eT_eCO2 ) on ecosystem C dynamics. We performed two in situ 13 CO2 pulse-labeling campaigns to trace the fate of recent C during peak drought and recovery. eT_eCO2 increased soil respiration and the fraction of recently assimilated C in soil respiration. During drought, plant C uptake was reduced by c. 50% in both ambient and eT_eCO2 conditions. Soil respiration and the amount and proportion of 13 C respired from soil were reduced (by 32%, 70% and 30%, respectively), the effect being more pronounced under eT_eCO2 (50%, 84%, 70%). Under drought, the diel coupling of photosynthesis and SR persisted only in the eT_eCO2 scenario, likely caused by dynamic shifts in the use of freshly assimilated C between storage and respiration. Drought did not affect the fraction of recent C remaining in plant biomass under ambient and eT_eCO2 , but reduced the small fraction remaining in soil under eT_eCO2 . After rewetting, C uptake and the proportion of recent C in soil respiration recovered more rapidly under eT_eCO2 compared to ambient conditions. Overall, our findings suggest that in a warmer climate under elevated CO2 drought effects on the fate of recent C will be amplified and the coupling of photosynthesis and soil respiration will be sustained. To predict the future dynamics of terrestrial C cycling, such interactive effects of multiple global change factors should be considered.


Subject(s)
Carbon , Soil , Carbon Dioxide/analysis , Droughts , Ecosystem , Grassland , Respiration
SELECTION OF CITATIONS
SEARCH DETAIL
...