Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Pharmacol ; 204: 115233, 2022 10.
Article in English | MEDLINE | ID: mdl-36041543

ABSTRACT

Antiestrogen resistance of breast cancer has been related to enhanced growth factor receptor expression and activation. We have previously shown that ectopic expression and subsequent activation of the insulin-like growth factor-1 receptor (IGF1R) or the epidermal growth factor receptor (EGFR) in MCF7 or T47D breast cancer cells results in antiestrogen resistance. In order to identify novel therapeutic targets to prevent this antiestrogen resistance, we performed kinase inhibitor screens with 273 different inhibitors in MCF7 cells overexpressing IGF1R or EGFR. Kinase inhibitors that antagonized antiestrogen resistance but are not directly involved in IGF1R or EGFR signaling were prioritized for further analyses. Various ALK (anaplastic lymphoma receptor tyrosine kinase) inhibitors inhibited cell proliferation in IGF1R expressing cells under normal and antiestrogen resistance conditions by preventing IGF1R activation and subsequent downstream signaling; the ALK inhibitors did not affect EGFR signaling. On the other hand, MEK (mitogen-activated protein kinase kinase)1/2 inhibitors, including PD0325901, selumetinib, trametinib and TAK-733, selectively antagonized IGF1R signaling-mediated antiestrogen resistance but did not affect cell proliferation under normal growth conditions. RNAseq analysis revealed that MEK inhibitors PD0325901 and selumetinib drastically altered cell cycle progression and cell migration networks under IGF1R signaling-mediated antiestrogen resistance. In a group of 219 patients with metastasized ER + breast cancer, strong pMEK staining showed a significant correlation with no clinical benefit of first-line tamoxifen treatment. We propose a critical role for MEK activation in IGF1R signaling-mediated antiestrogen resistance and anticipate that dual-targeted therapy with a MEK inhibitor and antiestrogen could improve treatment outcome.


Subject(s)
Breast Neoplasms , Estrogen Receptor Modulators , Anaplastic Lymphoma Kinase , Benzamides , Breast Neoplasms/metabolism , Cell Line, Tumor , Diphenylamine/analogs & derivatives , Drug Resistance, Neoplasm , ErbB Receptors , Estrogen Antagonists/pharmacology , Estrogen Receptor Modulators/pharmacology , Estrogen Receptor Modulators/therapeutic use , Estrogen Receptor alpha/metabolism , Female , Humans , Insulin-Like Growth Factor I , Mitogen-Activated Protein Kinase Kinases , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Receptor, IGF Type 1 , Tamoxifen/pharmacology , Tamoxifen/therapeutic use
2.
Toxicol In Vitro ; 20(6): 1005-13, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16488111

ABSTRACT

We recently developed two biomarker sets for oxidative damage: one for determination of lipid peroxidation (LPO) degradation products; acetaldehyde, propanal, butanal, pentanal, hexanal, heptanal, octanal, nonanal, malondialdehyde and acetone, by a gas chromatography-electron capture detection method, and the other for protein oxidation products such as o,o'-dityrosine, by an isotope dilution high performance liquid chromatography-tandem mass spectrometry method. In the present study, we explored the possibility to utilize these biomarkers for determining the oxidative damage in liver mammalian cells in vitro. Two different treatments were chosen for inducing oxidative stress in Chinese Hamster ovary cells: menadione and copper plus hydrogen peroxide (Cu2+/H2O2). Cells were incubated with the model compounds in the presence or absence of vitamin E and C, and cytotoxicity was evaluated by a nuclear-dye method. Results were compared to two fluorescent probes, H2DCF-DA and C11 -BODIPY581/591, which have been used for determining the formation of free radicals in the cells. From ten LPO degradation products, eight were increased significantly following incubation with menadione in cell lysate or incubation media. Menadione-induced oxidative stress was also confirmed by oxidation of fluorescent probes. However, no increased formation of protein oxidation products was observed. Vitamin E and C did not diminish the formation of LPO degradation products that were increased by menadione. Although Cu2+/H2O2 did not induce oxidation of fluorescent probes, it induced formation of six out of ten LPO degradation products. Vitamin E and C did not diminish the formation of LPO degradation products; vitamin C even substantially increased the formation of acetaldehyde and propanal, which is in line with its reported prooxidant action under certain conditions. Vitamin C also caused two-fold increase in Cu2+/H2O2-induced o,o'-dityrosine formation when applied simultaneously. In conclusion, our present results show that the LPO biomarker set can be used for evaluation of oxidant capacity and the toxic potential of various chemicals in an in vitro cell model. These biomarkers might even be more sensitive than measuring protein oxidation products or oxidation of fluorescent probes.


Subject(s)
Boron Compounds , Fluoresceins , Fluorescent Dyes , Lipid Peroxidation , Proteins/metabolism , Animals , Ascorbic Acid/pharmacology , Biomarkers , CHO Cells , Cell Survival , Cricetinae , Malondialdehyde/analysis , Oxidation-Reduction , Tyrosine/analogs & derivatives , Tyrosine/metabolism , Vitamin E/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...