Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Digit Health ; 3: 707589, 2021.
Article in English | MEDLINE | ID: mdl-34713177

ABSTRACT

A new method for automated sleep stage scoring of polysomnographies is proposed that uses a random forest approach to model feature interactions and temporal effects. The model mostly relies on features based on the rules from the American Academy of Sleep Medicine, which allows medical experts to gain insights into the model. A common way to evaluate automated approaches to constructing hypnograms is to compare the one produced by the algorithm to an expert's hypnogram. However, given the same data, two expert annotators will construct (slightly) different hypnograms due to differing interpretations of the data or individual mistakes. A thorough evaluation of our method is performed on a multi-labeled dataset in which both the inter-rater variability as well as the prediction uncertainties are taken into account, leading to a new standard for the evaluation of automated sleep stage scoring algorithms. On all epochs, our model achieves an accuracy of 82.7%, which is only slightly lower than the inter-rater disagreement. When only considering the 63.3% of the epochs where both the experts and algorithm are certain, the model achieves an accuracy of 97.8%. Transition periods between sleep stages are identified and studied for the first time. Scoring guidelines for medical experts are provided to complement the certain predictions by scoring only a few epochs manually. This makes the proposed method highly time-efficient while guaranteeing a highly accurate final hypnogram.

2.
PLoS One ; 13(6): e0199509, 2018.
Article in English | MEDLINE | ID: mdl-29958282

ABSTRACT

Maximal oxygen uptake (VO2max) is often used to assess an individual's cardiorespiratory fitness. However, measuring this variable requires an athlete to perform a maximal exercise test which may be impractical, since this test requires trained staff and specialized equipment, and may be hard to incorporate regularly into training programs. The aim of this study is to develop a new model for predicting VO2max by exploiting its relationship to heart rate and accelerometer features extracted during submaximal running. To do so, we analyzed data collected from 31 recreational runners (15 men and 16 women) aged 19-26 years who performed a maximal incremental test on a treadmill. During this test, the subjects' heart rate and acceleration at three locations (the upper back, the lower back and the tibia) were continuously measured. We extracted a wide variety of features from the measurements of the warm-up and the first three stages of the test and employed a data-driven approach to select the most relevant ones. Furthermore, we evaluated the utility of combining different types of features. Empirically, we found that combining heart rate and accelerometer features resulted in the best model with a mean absolute error of 2.33 ml ⋅ kg-1 ⋅ min-1 and a mean absolute percentage error of 4.92%. The model includes four features: gender, body mass, the inverse of the average heart rate and the inverse of the variance of the total tibia acceleration during the warm-up stage of the treadmill test. Our model provides a practical tool for recreational runners in the same age range to estimate their VO2max from submaximal running on a treadmill. It requires two body-worn sensors: a heart rate monitor and an accelerometer positioned on the tibia.


Subject(s)
Exercise/physiology , Heart Rate/physiology , Running/physiology , Acceleration , Humans , Linear Models , Models, Theoretical , Oxygen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...