Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Math Imaging Vis ; 60(6): 816-848, 2018.
Article in English | MEDLINE | ID: mdl-31007388

ABSTRACT

We present a PDE-based approach for finding optimal paths for the Reeds-Shepp car. In our model we minimize a (data-driven) functional involving both curvature and length penalization, with several generalizations. Our approach encompasses the two- and three-dimensional variants of this model, state-dependent costs, and moreover, the possibility of removing the reverse gear of the vehicle. We prove both global and local controllability results of the models. Via eikonal equations on the manifold R d × S d - 1 we compute distance maps w.r.t. highly anisotropic Finsler metrics, which approximate the singular (quasi)-distances underlying the model. This is achieved using a fast-marching (FM) method, building on Mirebeau (Numer Math 126(3):515-557, 2013; SIAM J Numer Anal 52(4):1573-1599, 2014). The FM method is based on specific discretization stencils which are adapted to the preferred directions of the Finsler metric and obey a generalized acuteness property. The shortest paths can be found with a gradient descent method on the distance map, which we formalize in a theorem. We justify the use of our approximating metrics by proving convergence results. Our curve optimization model in R d × S d - 1 with data-driven cost allows to extract complex tubular structures from medical images, e.g., crossings, and incomplete data due to occlusions or low contrast. Our work extends the results of Sanguinetti et al. (Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications LNCS 9423, 2015) on numerical sub-Riemannian eikonal equations and the Reeds-Shepp car to 3D, with comparisons to exact solutions by Duits et al. (J Dyn Control Syst 22(4):771-805, 2016). Numerical experiments show the high potential of our method in two applications: vessel tracking in retinal images for the case d = 2 and brain connectivity measures from diffusion-weighted MRI data for the case d = 3 , extending the work of Bekkers et al. (SIAM J Imaging Sci 8(4):2740-2770, 2015). We demonstrate how the new model without reverse gear better handles bifurcations.

2.
PLoS One ; 10(10): e0138122, 2015.
Article in English | MEDLINE | ID: mdl-26465600

ABSTRACT

We propose two strategies to improve the quality of tractography results computed from diffusion weighted magnetic resonance imaging (DW-MRI) data. Both methods are based on the same PDE framework, defined in the coupled space of positions and orientations, associated with a stochastic process describing the enhancement of elongated structures while preserving crossing structures. In the first method we use the enhancement PDE for contextual regularization of a fiber orientation distribution (FOD) that is obtained on individual voxels from high angular resolution diffusion imaging (HARDI) data via constrained spherical deconvolution (CSD). Thereby we improve the FOD as input for subsequent tractography. Secondly, we introduce the fiber to bundle coherence (FBC), a measure for quantification of fiber alignment. The FBC is computed from a tractography result using the same PDE framework and provides a criterion for removing the spurious fibers. We validate the proposed combination of CSD and enhancement on phantom data and on human data, acquired with different scanning protocols. On the phantom data we find that PDE enhancements improve both local metrics and global metrics of tractography results, compared to CSD without enhancements. On the human data we show that the enhancements allow for a better reconstruction of crossing fiber bundles and they reduce the variability of the tractography output with respect to the acquisition parameters. Finally, we show that both the enhancement of the FODs and the use of the FBC measure on the tractography improve the stability with respect to different stochastic realizations of probabilistic tractography. This is shown in a clinical application: the reconstruction of the optic radiation for epilepsy surgery planning.


Subject(s)
Diffusion Magnetic Resonance Imaging/methods , Diffusion Tensor Imaging/methods , Epilepsy/surgery , Algorithms , Brain/pathology , Computer Simulation , Epilepsy/pathology , False Positive Reactions , Humans , Image Interpretation, Computer-Assisted/methods , Image Processing, Computer-Assisted , Models, Statistical , Pattern Recognition, Automated/methods , Phantoms, Imaging , Probability , Stochastic Processes , White Matter/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...