Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
J Neurol Neurosurg Psychiatry ; 92(5): 494-501, 2021 05.
Article in English | MEDLINE | ID: mdl-33452053

ABSTRACT

OBJECTIVE: Progranulin-related frontotemporal dementia (FTD-GRN) is a fast progressive disease. Modelling the cascade of multimodal biomarker changes aids in understanding the aetiology of this disease and enables monitoring of individual mutation carriers. In this cross-sectional study, we estimated the temporal cascade of biomarker changes for FTD-GRN, in a data-driven way. METHODS: We included 56 presymptomatic and 35 symptomatic GRN mutation carriers, and 35 healthy non-carriers. Selected biomarkers were neurofilament light chain (NfL), grey matter volume, white matter microstructure and cognitive domains. We used discriminative event-based modelling to infer the cascade of biomarker changes in FTD-GRN and estimated individual disease severity through cross-validation. We derived the biomarker cascades in non-fluent variant primary progressive aphasia (nfvPPA) and behavioural variant FTD (bvFTD) to understand the differences between these phenotypes. RESULTS: Language functioning and NfL were the earliest abnormal biomarkers in FTD-GRN. White matter tracts were affected before grey matter volume, and the left hemisphere degenerated before the right. Based on individual disease severities, presymptomatic carriers could be delineated from symptomatic carriers with a sensitivity of 100% and specificity of 96.1%. The estimated disease severity strongly correlated with functional severity in nfvPPA, but not in bvFTD. In addition, the biomarker cascade in bvFTD showed more uncertainty than nfvPPA. CONCLUSION: Degeneration of axons and language deficits are indicated to be the earliest biomarkers in FTD-GRN, with bvFTD being more heterogeneous in disease progression than nfvPPA. Our data-driven model could help identify presymptomatic GRN mutation carriers at risk of conversion to the clinical stage.


Subject(s)
Cognition/physiology , Frontotemporal Dementia/genetics , Gray Matter/diagnostic imaging , Mutation , Progranulins/genetics , White Matter/diagnostic imaging , Aged , Biomarkers , Brain/diagnostic imaging , Disease Progression , Female , Frontotemporal Dementia/blood , Frontotemporal Dementia/diagnostic imaging , Humans , Language , Magnetic Resonance Imaging , Male , Middle Aged , Neurofilament Proteins/blood , Neuropsychological Tests , Phenotype
2.
Front Neurosci ; 13: 729, 2019.
Article in English | MEDLINE | ID: mdl-31379483

ABSTRACT

Neuroimaging MRI data in scientific research is increasingly pooled, but the reliability of such studies may be hampered by the use of different hardware elements. This might introduce bias, for example when cross-sectional studies pool data acquired with different head coils, or when longitudinal clinical studies change head coils halfway. In the present study, we aimed to estimate this possible bias introduced by using different head coils to create awareness and to avoid misinterpretation of results. We acquired, with both an 8 channel and 32 channel head coil, T1-weighted, diffusion tensor imaging and resting state fMRI images at 3T MRI (Philips Achieva) with stable acquisition parameters in a large group of cognitively healthy participants (n = 77). Standard analysis methods, i.e., voxel-based morphometry, tract-based spatial statistics and resting state functional network analyses, were used in a within-subject design to compare 8 and 32 channel head coil data. Signal-to-noise ratios (SNR) for both head coils showed similar ranges, although the 32 channel SNR profile was more homogeneous. Our data demonstrates specific patterns of gray and white matter volume differences between head coils (relative volume change of 6 to 9%), related to altered image contrast and therefore, altered tissue segmentation. White matter connectivity (fractional anisotropy and diffusivity measures) showed hemispherical dependent differences between head coils (relative connectivity change of 4 to 6%), and functional connectivity in resting state networks was higher using the 32 channel head coil in posterior cortical areas (relative change up to 27.5%). This study shows that, even when acquisition protocols are harmonized, the results of standardized analysis models can be severely affected by the use of different head coils. Researchers should be aware of this when combining multiple neuroimaging MRI datasets, to prevent coil-related bias and avoid misinterpretation of their findings.

3.
J Neurol Neurosurg Psychiatry ; 90(9): 997-1004, 2019 09.
Article in English | MEDLINE | ID: mdl-31123142

ABSTRACT

BACKGROUND: Semantic dementia (SD) is a neurodegenerative disorder characterised by progressive language problems falling within the clinicopathological spectrum of frontotemporal lobar degeneration (FTLD). The development of disease-modifying agents may be facilitated by the relative clinical and pathological homogeneity of SD, but we need robust monitoring biomarkers to measure their efficacy. In different FTLD subtypes, neurofilament light chain (NfL) is a promising marker, therefore we investigated the utility of cerebrospinal fluid (CSF) NfL in SD. METHODS: This large retrospective multicentre study compared cross-sectional CSF NfL levels of 162 patients with SD with 65 controls. CSF NfL levels of patients were correlated with clinical parameters (including survival), neuropsychological test scores and regional grey matter atrophy (including longitudinal data in a subset). RESULTS: CSF NfL levels were significantly higher in patients with SD (median: 2326 pg/mL, IQR: 1628-3593) than in controls (577 (446-766), p<0.001). Higher CSF NfL levels were moderately associated with naming impairment as measured by the Boston Naming Test (rs =-0.32, p=0.002) and with smaller grey matter volume of the parahippocampal gyri (rs =-0.31, p=0.004). However, cross-sectional CSF NfL levels were not associated with progression of grey matter atrophy and did not predict survival. CONCLUSION: CSF NfL is a promising biomarker in the diagnostic process of SD, although it has limited cross-sectional monitoring or prognostic abilities.


Subject(s)
Frontotemporal Dementia/cerebrospinal fluid , Neurofilament Proteins/cerebrospinal fluid , Aged , Case-Control Studies , Cross-Sectional Studies , Female , Frontotemporal Dementia/diagnosis , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/mortality , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neuroimaging , Neuropsychological Tests , Proportional Hazards Models , Retrospective Studies
4.
Neurobiol Aging ; 76: 115-124, 2019 04.
Article in English | MEDLINE | ID: mdl-30711674

ABSTRACT

In genetic frontotemporal dementia, cross-sectional studies have identified profiles of presymptomatic neuroanatomical loss for C9orf72 repeat expansion, MAPT, and GRN mutations. In this study, we characterize longitudinal gray matter (GM) and white matter (WM) brain changes in presymptomatic frontotemporal dementia. We included healthy carriers of C9orf72 repeat expansion (n = 12), MAPT (n = 15), GRN (n = 33) mutations, and related noncarriers (n = 53), that underwent magnetic resonance imaging at baseline and 2-year follow-up. We analyzed cross-sectional baseline, follow-up, and longitudinal GM and WM changes using voxel-based morphometry and cortical thickness analysis in SPM and tract-based spatial statistics in FSL. Compared with noncarriers, C9orf72 repeat expansion carriers showed lower GM volume in the cerebellum and insula, and WM differences in the anterior thalamic radiation, at baseline and follow-up. MAPT mutation carriers showed emerging GM temporal lobe changes and longitudinal WM degeneration of the uncinate fasciculus. GRN mutation carriers did not show presymptomatic neurodegeneration. This study shows distinct presymptomatic cross-sectional and longitudinal patterns of GM and WM changes across C9orf72 repeat expansion, MAPT, and GRN mutation carriers compared with noncarriers.


Subject(s)
Diffusion Tensor Imaging , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/genetics , Gray Matter/diagnostic imaging , Gray Matter/pathology , Neuroimaging , White Matter/diagnostic imaging , White Matter/pathology , Adult , Aged , C9orf72 Protein/genetics , Cross-Sectional Studies , DNA Repeat Expansion/genetics , Female , Frontotemporal Dementia/pathology , Heterozygote , Humans , Longitudinal Studies , Male , Middle Aged , Mutation , Progranulins/genetics , tau Proteins/genetics
5.
Neurobiol Aging ; 74: 225-233, 2019 02.
Article in English | MEDLINE | ID: mdl-30497016

ABSTRACT

Knowledge about the molecular mechanisms driving Alzheimer's disease (AD) is still limited. To learn more about AD biology, we performed whole transcriptome sequencing on the hippocampus of 20 AD cases and 10 age- and sex-matched cognitively healthy controls. We observed 2716 differentially expressed genes, of which 48% replicated in a second data set of 84 AD cases and 33 controls. We used an integrative network-based approach for combining transcriptomic and protein-protein interaction data to find differentially expressed gene modules that may reflect key processes in AD biology. A total of 735 differentially expressed genes were clustered into 33 modules, of which 82% replicated in a second data set, highlighting the robustness of this approach. These 27 modules were enriched for signal transduction, transport, response to stimulus, and several organic and cellular metabolic pathways. Ten modules interacted with previously described AD genes. Our study indicates that analyzing RNA-expression data based on annotated gene modules is more robust than on individual genes. We provide a comprehensive overview of the biological processes involved in AD, and the detected differentially expressed gene modules may provide a molecular basis for future research into mechanisms underlying AD.


Subject(s)
Alzheimer Disease/genetics , Gene Expression Profiling , Hippocampus , Protein Interaction Maps , Signal Transduction/genetics , Aged , Aged, 80 and over , Alzheimer Disease/etiology , Female , Gene Expression , Humans , Male , Middle Aged , RNA/genetics , RNA/metabolism , Sequence Analysis, RNA
6.
Neurobiol Aging ; 73: 229.e11-229.e18, 2019 01.
Article in English | MEDLINE | ID: mdl-30314817

ABSTRACT

Next-generation sequencing has contributed to our understanding of the genetics of Alzheimer's disease (AD) and has explained a substantial part of the missing heritability of familial AD. We sequenced 19 exomes from 8 Dutch families with a high AD burden and identified EIF2AK3, encoding for protein kinase RNA-like endoplasmic reticulum kinase (PERK), as a candidate gene. Gene-based burden analysis in a Dutch AD exome cohort containing 547 cases and 1070 controls showed a significant association of EIF2AK3 with AD (OR 1.84 [95% CI 1.07-3.17], p-value 0.03), mainly driven by the variant p.R240H. Genotyping of this variant in an additional cohort from the Rotterdam Study showed a trend toward association with AD (p-value 0.1). Immunohistochemical staining with pPERK and peIF2α of 3 EIF2AK3 AD carriers showed an increase in hippocampal neuronal cells expressing these proteins compared with nondemented controls, but no difference was observed in AD noncarriers. This study suggests that rare variants in EIF2AK3 may be associated with disease risk in AD.


Subject(s)
Alzheimer Disease/genetics , Genetic Association Studies , Genetic Variation/genetics , eIF-2 Kinase/genetics , Aged , Female , Hippocampus/metabolism , Humans , Male , Middle Aged , Netherlands , Risk , Exome Sequencing , eIF-2 Kinase/metabolism
7.
J Alzheimers Dis ; 65(4): 1139-1146, 2018.
Article in English | MEDLINE | ID: mdl-30103325

ABSTRACT

Valosin-containing protein (VCP) is involved in multiple cellular activities. Mutations in VCP lead to heterogeneous clinical presentations including inclusion body myopathy with Paget's disease of the bone, frontotemporal dementia and amyotrophic lateral sclerosis, even in patients carrying the same mutation. We screened a cohort of 48 patients with familial frontotemporal dementia (FTD) negative for MAPT, GRN, and C9orf72 mutations for other known FTD genes by using whole exome sequencing. In addition, we carried out targeted sequencing of a cohort of 37 patients with frontotemporal lobar degeneration with Transactive response DNA-binding protein 43 (TDP-43) subtype from the Netherlands Brain bank. Two novel (p.Thr262Ser and p.Arg159Ser) and one reported (p.Met158Val) VCP mutations in three patients with a clinical diagnosis of FTD were identified, and were absence in population-match controls. All three patients presented with behavioral changes, with additional semantic deficits in one. No signs of Paget or muscle disease were observed. Pathological examination of the patient with VCP p.Arg159Ser mutation showed numerous TDP-43 immunoreactive (IR) neuronal intranuclear inclusions (NII) and dystrophic neurites (DN), while a lower number of NII and DN were observed in the patient with the VCP p.Thr262Ser mutation. Pathological findings of both patients were consistent with FTLD-TDP subtype D. Furthermore, only rare VCP-IR NII was observed in both cases. Our study expands the clinical heterogeneity of VCP mutations carriers, and indicates that other additional factors, such as genetic modifiers, may determine the clinical phenotype.


Subject(s)
Frontotemporal Dementia/genetics , Mutation/genetics , Valosin Containing Protein/genetics , Aged , Aged, 80 and over , Cohort Studies , Computational Biology , DNA-Binding Proteins/genetics , Family Health , Female , Genetic Testing , Humans , Male , Middle Aged , Netherlands , Neurologic Examination
8.
Ann Clin Transl Neurol ; 5(5): 583-597, 2018 May.
Article in English | MEDLINE | ID: mdl-29761121

ABSTRACT

OBJECTIVE: To evaluate poly(GP), a dipeptide repeat protein, and neurofilament light chain (NfL) as biomarkers in presymptomatic C9orf72 repeat expansion carriers and patients with C9orf72-associated frontotemporal dementia. Additionally, to investigate the relationship of poly(GP) with indicators of neurodegeneration as measured by NfL and grey matter volume. METHODS: We measured poly(GP) and NfL levels in cerebrospinal fluid (CSF) from 25 presymptomatic C9orf72 expansion carriers, 64 symptomatic expansion carriers with dementia, and 12 noncarriers. We explored associations with grey matter volumes using region of interest and voxel-wise analyses. RESULTS: Poly(GP) was present in C9orf72 expansion carriers and absent in noncarriers (specificity 100%, sensitivity 97%). Presymptomatic carriers had lower poly(GP) levels than symptomatic carriers. NfL levels were higher in symptomatic carriers than in presymptomatic carriers and healthy noncarriers. NfL was highest in patients with concomitant motor neuron disease, and correlated with disease severity and survival. Associations between poly(GP) levels and small grey matter regions emerged but did not survive multiple comparison correction, while higher NfL levels were associated with atrophy in frontotemporoparietal cortices and the thalamus. INTERPRETATION: This study of C9orf72 expansion carriers reveals that: (1) poly(GP) levels discriminate presymptomatic and symptomatic expansion carriers from noncarriers, but are not associated with indicators of neurodegeneration; and (2) NfL levels are associated with grey matter atrophy, disease severity, and shorter survival. Together, poly(GP) and NfL show promise as complementary biomarkers for clinical trials for C9orf72-associated frontotemporal dementia, with poly(GP) as a potential marker for target engagement and NfL as a marker of disease activity and progression.

9.
J Neurol ; 265(6): 1381-1392, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29627938

ABSTRACT

INTRODUCTION: We performed 4-year follow-up neuropsychological assessment to investigate cognitive decline and the prognostic abilities from presymptomatic to symptomatic familial frontotemporal dementia (FTD). METHODS: Presymptomatic MAPT (n = 15) and GRN mutation carriers (n = 31), and healthy controls (n = 39) underwent neuropsychological assessment every 2 years. Eight mutation carriers (5 MAPT, 3 GRN) became symptomatic. We investigated cognitive decline with multilevel regression modeling; the prognostic performance was assessed with ROC analyses and stepwise logistic regression. RESULTS: MAPT converters declined on language, attention, executive function, social cognition, and memory, and GRN converters declined on attention and executive function (p < 0.05). Cognitive decline in ScreeLing phonology (p = 0.046) and letter fluency (p = 0.046) were predictive for conversion to non-fluent variant PPA, and decline on categorical fluency (p = 0.025) for an underlying MAPT mutation. DISCUSSION: Using longitudinal neuropsychological assessment, we detected a mutation-specific pattern of cognitive decline, potentially suggesting prognostic value of neuropsychological trajectories in conversion to symptomatic FTD.


Subject(s)
Frontotemporal Dementia/diagnosis , Frontotemporal Dementia/psychology , Adult , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/genetics , Female , Follow-Up Studies , Frontotemporal Dementia/genetics , Genetic Predisposition to Disease , Heterozygote , Humans , Intercellular Signaling Peptides and Proteins/genetics , Longitudinal Studies , Male , Middle Aged , Multilevel Analysis , Mutation , Neuropsychological Tests , Prodromal Symptoms , Prognosis , Progranulins , ROC Curve , Regression Analysis , tau Proteins/genetics
10.
Neurology ; 90(14): e1231-e1239, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29514947

ABSTRACT

OBJECTIVE: To examine the clinical value of neurofilament light chain (NfL) and the phospho-tau/total tau ratio (p/t-tau) across the entire frontotemporal dementia (FTD) spectrum in a large, well-defined cohort. METHODS: CSF NfL and p/t-tau levels were studied in 361 patients with FTD: 179 behavioral variant FTD, 17 FTD with motor neuron disease (FTD-MND), 36 semantic variant primary progressive aphasia (PPA), 19 nonfluent variant PPA, 4 logopenic variant PPA (lvPPA), 42 corticobasal syndrome, and 64 progressive supranuclear palsy. Forty-five cognitively healthy controls were also included. Definite pathology was known in 68 patients (49 frontotemporal lobar degeneration [FTLD]-TDP, 18 FTLD-tau, 1 FTLD-FUS). RESULTS: NfL was higher in all diagnoses, except lvPPA (n = 4), than in controls, equally elevated in behavioral variant FTD, semantic variant PPA, nonfluent variant PPA, and corticobasal syndrome, and highest in FTD-MND. The p/t-tau was lower in all clinical groups, except lvPPA, than in controls and lowest in FTD-MND. NfL did not discriminate between TDP and tau pathology, while the p/t-tau ratio had a good specificity (76%) and moderate sensitivity (67%). Both high NfL and low p/t-tau were associated with poor survival (hazard ratio on tertiles 1.7 for NfL, 0.7 for p/t-tau). CONCLUSION: NfL and p/t-tau similarly discriminated FTD from controls, but not between clinical subtypes, apart from FTD-MND. Both markers predicted survival and are promising monitoring biomarkers for clinical trials. Of note, p/t-tau, but not NfL, was specific to discriminate TDP from tau pathology in vivo. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that for patients with cognitive issues, CSF NfL and p/t-tau levels discriminate between those with and without FTD spectrum disorders.


Subject(s)
Frontotemporal Dementia/cerebrospinal fluid , Neurofilament Proteins/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Aged , Aphasia, Primary Progressive/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Case-Control Studies , Cohort Studies , Female , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Motor Neuron Disease/cerebrospinal fluid , Phosphorylation , Prognosis , Sensitivity and Specificity , Supranuclear Palsy, Progressive/cerebrospinal fluid
11.
Dement Geriatr Cogn Dis Extra ; 6(2): 330-340, 2016.
Article in English | MEDLINE | ID: mdl-27703466

ABSTRACT

BACKGROUND: Pathogenic mutations in the granulin gene (GRN) are causative in 5-10% of patients with frontotemporal dementia (FTD), mostly leading to reduced progranulin protein (PGRN) levels. Upcoming therapeutic trials focus on enhancing PGRN levels. METHODS: Fluctuations in plasma PGRN (n = 41) and its relationship with cerebrospinal fluid (CSF, n = 32) and specific single nucleotide polymorphisms were investigated in pre- and symptomatic GRN mutation carriers and controls. RESULTS: Plasma PGRN levels were lower in carriers than in controls and showed a mean coefficient of variation of 5.3% in carriers over 1 week. Although plasma PGRN correlated with CSF PGRN in carriers (r = 0.54, p = 0.02), plasma only explained 29% of the variability in CSF PGRN. rs5848, rs646776 and rs1990622 genotypes only partly explained the variability of PGRN levels between subjects. CONCLUSIONS: Plasma PGRN is relatively stable over 1 week and therefore seems suitable for treatment monitoring of PGRN-enhancing agents. Since plasma PGRN only moderately correlated with CSF PGRN, CSF sampling will additionally be needed in therapeutic trials.

12.
Alzheimers Dement (Amst) ; 2: 86-94, 2016.
Article in English | MEDLINE | ID: mdl-27239539

ABSTRACT

INTRODUCTION: Reliable cerebrospinal fluid (CSF) biomarkers enabling identification of frontotemporal dementia (FTD) and its pathologic subtypes are lacking. METHODS: Unbiased high-resolution mass spectrometry-based proteomics was applied on CSF of FTD patients with TAR DNA-binding protein 43 (TDP-43, FTD-TDP, n = 12) or tau pathology (FTD-tau, n = 8), and individuals with subjective memory complaints (SMC, n = 10). Validation was performed by applying enzyme-linked immunosorbent assay (ELISA) or enzymatic assays, when available, in a larger cohort (FTLD-TDP, n = 21, FTLD-tau, n = 10, SMC, n = 23) and in Alzheimer's disease (n = 20), dementia with Lewy bodies (DLB, n = 20), and vascular dementia (VaD, n = 18). RESULTS: Of 1914 identified CSF proteins, 56 proteins were differentially regulated (fold change >1.2, P < .05) between the different patient groups: either between the two pathologic subtypes (10 proteins), or between at least one of these FTD subtypes and SMC (47 proteins). We confirmed the differential expression of YKL-40 by ELISA in a partly independent cohort. Furthermore, enzyme activity of catalase was decreased in FTD subtypes compared with SMC. Further validation in a larger cohort showed that the level of YKL-40 was twofold increased in both FTD pathologic subtypes compared with SMC and that the levels in FTLD-tau were higher compared to Alzheimer's dementia (AD), DLB, and VaD patients. Clinical validation furthermore showed that the catalase enzyme activity was decreased in the FTD subtypes compared to SMC, AD and DLB. DISCUSSION: We identified promising CSF biomarkers for both FTD differential diagnosis and pathologic subtyping. YKL-40 and catalase enzyme activity should be validated further in similar pathology defined patient cohorts for their use for FTD diagnosis or treatment development.

SELECTION OF CITATIONS
SEARCH DETAIL
...