Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 14(30): 21999-22005, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38993507

ABSTRACT

Monolayer molybdenum disulfide (MoS2) semiconductors are the new generation of two-dimensional materials that possess several advantages compared to graphene due to their tunable bandgap and high electron mobility. Several approaches have been used to modify their physical properties for optical device applications. Here, we report a facile and non-destructive surface modification method for monolayer MoS2 via electron irradiation at a low, 5 kV accelerating voltage. After electron irradiation, the results of Raman and photoluminescence spectroscopy confirmed that the structure remains unchanged. However, when the modified surface was illuminated with a 532 nm laser for a prolonged period, the PL intensity was quenched as a result of oxygen desorption. Interestingly, the PL intensity can be recovered when left in ambient conditions for 10 h. The analysis of the PL spectrum revealed a decrease of trion, which is consistent with the readsorbed O2 molecules on the surface that deplete electrons and lead to PL recovery. We attribute this effect to the enhancement of the n-type character of monolayer MoS2 after electron irradiation. The sensitive nature of the modified surface to oxygen suggests that this approach may be used as a tool for the fabrication of MoS2 oxygen sensors.

2.
Micromachines (Basel) ; 13(11)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36422418

ABSTRACT

The consumption of electrical energy grows alongside the development of global industry. Generating energy storage has become the primary focus of current research, examining supercapacitors with high power density. The primary raw material used in supercapacitor electrodes is activated carbon (AC). To improve the performance of activated carbon, we used manganese dioxide (MnO2), which has a theoretical capacitance of up to 1370 Fg-1. The composite-based activated carbon with a different mass of 0-20% MnO2 was successfully introduced as the positive electrode. The asymmetric cell supercapacitors based on activated carbon as the anode delivered an excellent gravimetric capacitance, energy density, and power density of 84.28 Fg-1, 14.88 Wh.kg-1, and 96.68 W.kg-1, respectively, at 1 M Et4NBF4, maintaining 88.88% after 1000 test cycles.

3.
Sci Rep ; 12(1): 10063, 2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35710801

ABSTRACT

We investigated the effects of both intrinsic defects and hydrogen atom impurities on the magnetic properties of MgO samples. MgO in its pure defect-free state is known to be a nonmagnetic semiconductor. We employed density-functional theory and the Heyd-Scuseria-Ernzerhof (HSE) density functional. The calculated formation energy and total magnetic moment indicated that uncharged [Formula: see text] and singly charged [Formula: see text] magnesium vacancies are more stable than oxygen vacancies (VO) under O-rich growth conditions and introduce a magnetic moment to MgO. The calculated density of states (DOS) results demonstrated that magnetic moments of VMg result from spin polarization of an unpaired electron of the partially occupied valence band, which is dominated by O 2p orbitals. Based on our calculations, VMg is the origin of magnetism and ferromagnetism in MgO. In contrast, the magnetic moment of the magnetic VMg-MgO crystal is suppressed by hydrogen (H) atoms, and unpaired electrons are donated to the unpaired electronic states of VMg when the defect complex Hi-VMg is formed. This suggests that H causes a reduction in magnetization of the ferromagnetic MgO. We then performed experimental studies to verify the DFT predictions by subjecting the MgO sample to a thermal treatment that creates Mg vacancies in the structure and intentionally doping the MgO sample with hydrogen atoms. We found good agreement between the DFT results and the experimental data. Our findings suggest that the ferromagnetism and diamagnetism of MgO can be controlled by heat treatment and hydrogen doping, which may find applications in magnetic sensing and switching under different environmental conditions.

4.
ACS Omega ; 6(30): 19647-19655, 2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34368552

ABSTRACT

Water electrolysis has received much attention in recent years as a means of sustainable H2 production. However, many challenges remain in obtaining high-purity H2 and making large-scale production cost-effective. This study provides a strategy for integrating a two-cell water electrolysis system with solar energy storage. In our proposed system, CuO-Cu(OH)2/Cu2O was used as a redox mediator between oxygen and hydrogen evolution components. The system not only overcame the gas-mixing issue but also showed high gas generation performance. The redox reaction (charge/discharge) of CuO-Cu(OH)2/Cu2O led to a significant increase (51%) in the initial rate of H2 production from 111.7 µmol h-1 cm-2 in the dark to 168.9 µmol h-1 cm-2 under solar irradiation. The effects of light on the redox reaction of CuO-Cu(OH)2/Cu2O during water electrolysis were investigated by in situ X-ray absorption and photoemission spectroscopy. These results suggest that surface oxygen vacancies are created under irradiation and play an important role in increased capacitance and gas generation. These findings provide a new path to direct storage of abundant solar energy and low-cost sustainable hydrogen production.

5.
Appl Radiat Isot ; 147: 105-112, 2019 May.
Article in English | MEDLINE | ID: mdl-30852298

ABSTRACT

We explore the utility of controlled low-doses (0.2-100 Gy) of photon irradiation as initiators of structural alteration in carbon-rich materials. To-date our work on carbon has focused on ß-, x- and γ-irradiations and the monitoring of radiotherapeutic doses (from a few Gy up to some tens of Gy) on the basis of the thermoluminescence (TL) signal, also via Raman and X-ray photo-spectroscopy (XPS), providing analysis of the dose dependence of single-walled carbon nanotubes (SWCNT). The work has been extended herein to investigate possibilities for analysis of structural alterations in graphite-rich mixtures, use being made of two grades of graphite-rich pencil lead, 8H and 2B, both being in the form produced for mechanical pencils (propelling or clutch pencils). 2B has the greater graphite content (approaching 98 wt %), 8H being a mixture of C, O, Al and Si (with respective weight percentages 39.2, 38.2, 9.8 and 12.8). Working on media pre-annealed at 400 °C, both have subsequently been irradiated to penetrating photon-mediated doses. Raman spectroscopy analysis has been carried out using a 532 nm laser Raman spectrometer, while for samples irradiated to doses from 1 to 40 Gy, XPS spectra were acquired using Al Kα sources (hv ∼1400 eV); carbon KLL Auger peaks were acquired using 50 eV Pass Energy. At these relatively low doses, alterations in order-disorder are clearly observed, defect generation and internal annealing competing as dominating effects across the dose range.

6.
Sci Adv ; 1(8): e1500495, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26601268

ABSTRACT

The Rashba effect is one of the most striking manifestations of spin-orbit coupling in solids and provides a cornerstone for the burgeoning field of semiconductor spintronics. It is typically assumed to manifest as a momentum-dependent splitting of a single initially spin-degenerate band into two branches with opposite spin polarization. Combining polarization-dependent and resonant angle-resolved photoemission measurements with density functional theory calculations, we show that the two "spin-split" branches of the model giant Rashba system BiTeI additionally develop disparate orbital textures, each of which is coupled to a distinct spin configuration. This necessitates a reinterpretation of spin splitting in Rashba-like systems and opens new possibilities for controlling spin polarization through the orbital sector.

7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 66(4 Pt 2): 046308, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12443323

ABSTRACT

We report on defect formation in convection patterns of stadium-shaped and elliptical horizontal layers of fluid heated from below (Rayleigh-Bénard convection). The fluid was ethanol with a Prandtl number sigma=14.2. The outermost convection roll was forced to be parallel to the sidewall by a supplementary wall heater. The major- and minor-axis aspect ratios Gamma(i)=D(i)/2d, i=1, 2 (D(i) are the major and minor diameter and d the thickness) were 19.4 and 13.0, respectively. For the stadium shape, we found a stable pattern that was reflection-symmetric about the major diameter and had a downflow roll of length L(s) along a large part of this diameter. This roll terminated in two convex disclinations, as expected from theory. No other patterns with the outermost roll parallel to the sidewall were found. The wave numbers of the rolls in the curved sections and L(s) decreased with increasing epsilon identical with DeltaT/DeltaT(c)-1, consistent with a prediction for wave-number selection by curved rolls in an infinite system. At large epsilon, the roll adjacent to the sidewall became unstable due to the cross-roll instability. For the elliptical shape, wave-director frustration yielded a new defect structure predicted by Ercolani et al. Depending on the sample history, three different patterns with the outermost roll parallel to the wall were found. For one, the central downflow roll seen in the stadium was shortened to the point where it resembled a single convection cell. Along much of the major diameter there existed an upflow roll. The new defect structure occurred where the two downflow rolls surrounding the central upflow roll joined. This joint, instead of being smooth as in the stadium case, was angular and created a protuberance pointing outward along the major diameter. We also found a pattern with an upflow roll along the major diameter without the central downflow cell. A third pattern contained a downflow cell, but this cell was displaced by a roll width from the center along a minor diameter. As epsilon increased, the length L(e) between the two protuberances and the wave numbers along the outer parts of the major diameter decreased for all three patterns, analogous to what was found for the stadium. The upper stability limit of these patterns was also set by the cross-roll instability.

SELECTION OF CITATIONS
SEARCH DETAIL
...