Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 7(18): 15499-15506, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35571840

ABSTRACT

Controlling the radiative rate of emitters with macromolecular photonic structures promises flexible devices with enhanced performances that are easy to scale up. For instance, radiative rate enhancement empowers low-threshold lasers, while rate suppression affects recombination in photovoltaic and photochemical processes. However, claims of the Purcell effect with polymer structures are controversial, as the low dielectric contrast typical of suitable polymers is commonly not enough to provide the necessary confinement. Here we show all-polymer planar microcavities with photonic band gaps tuned to the photoluminescence of a diketopyrrolopyrrole derivative, which allows a change in the fluorescence lifetime. Radiative and nonradiative rates were disentangled systematically by measuring the external quantum efficiencies and comparing the planar microcavities with a series of references designed to exclude any extrinsic effects. For the first time, this analysis shows unambiguously the dye radiative emission rate variations obtained with macromolecular dielectric mirrors. When different waveguides, chemical environments, and effective refractive index effects in the structure were accounted for, the change in the radiative lifetime was assigned to the Purcell effect. This was possible through the exploitation of photonic structures made of polyvinylcarbazole as a high-index material and the perfluorinated Aquivion as a low-index one, which produced the largest dielectric contrast ever obtained in planar polymer cavities. This characteristic induces the high confinement of the radiation electric field within the cavity layer, causing a record intensity enhancement and steering the radiative rate. Current limits and requirements to achieve the full control of radiative rates with polymer planar microcavities are also addressed.

2.
ACS Appl Mater Interfaces ; 14(17): 19806-19817, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35443778

ABSTRACT

Solution processing of highly performing photonic crystals has been a towering ambition for making them technologically relevant in applications requiring mass and large-area production. It would indeed represent a paradigm changer for the fabrication of sensors and for light management nanostructures meant for photonics and advanced photocatalytic systems. On the other hand, solution-processed structures often suffer from low dielectric contrast and poor optical quality or require complex deposition procedures due to the intrinsic properties of components treatable from solution. This work reports on a low-temperature sol-gel route between the alkoxides of Si and Ti and poly(acrylic acid), leading to stable polymer-inorganic hybrid materials with tunable refractive index and, in the case of titania hybrid, photoactive properties. Alternating thin films of the two hybrids allows planar photonic crystals with high optical quality and dielectric contrast as large as 0.64. Moreover, low-temperature treatments also allow coupling the titania hybrids with several temperature-sensitive materials including dielectric and semiconducting polymers to fabricate photonic structures. These findings open new perspectives in several fields; preliminary results demonstrate that the hybrid structures are suitable for sensing and the enhancement of the catalytic activity of photoactive media and light emission control.

3.
ACS Appl Mater Interfaces ; 14(12): 14550-14560, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35306809

ABSTRACT

Preventing solar heating is nowadays of paramount interest in energy savings and health preservation. For instance, in building thermalization solar heating consumes an excess of energy leading to harmful CO2 emissions, while in food and beverage packaging it may lead to variation of organoleptic properties or even health issues. The phenomenon is attributed to the large presence of moieties with highly absorbing vibrational overtones and combination bands in the near-infrared spectral region that induces heating in water, moisture, and in polymers used in packaging. Thus, reducing and controlling the light absorbed by these materials with effective low-cost passive systems can play a major role in energy saving and health preservation. In this work, different polymer dielectric mirrors are reported, made of poly(N-vinylcarbazole) and either cellulose acetate or poly(acrylic acid), and able to selectively reflect near-infrared radiation while maintaining high transparency in the visible range. To this end, simple, tandem, and superperiodic mirrors are used to shield radiation impinging on samples of water and paraffin, demonstrating shielding efficiencies up to 52% with respect to unshielded references, promising a new paradigm to solve thermal management issues.

SELECTION OF CITATIONS
SEARCH DETAIL
...