Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(8): e28683, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38628717

ABSTRACT

This study aims to explore the characteristics of tangent hyperbolic fluid flow along a stretching sheet. The sheet has suction or injection influences and is located inside a porous medium. The research inspects the flow and heat transfer (FHT) properties, taking into account the presence of a velocity slip condition. The flow of non-Newtonian magnetohydrodynamic fluid caused by a porous stretching sheet, taking into account thermal radiation and heat generation, has a wide range of engineering applications. These applications involve chemical reactors, energy distribution, storage of solar energy, and filtration processes. Mathematically, the flow problem is expressed as a collection of nonlinear partial differential equations. To numerically solve the resulting ODEs, the finite difference approach (FDM) is successfully used. Tables and graphs are used to display the various output values related to the hyperbolic tangent fluid. Among the different output values that appear are velocity and temperature. Significant observations from the study indicate that an increase in the power-law index, slip velocity parameter, porosity parameter, and magnetic number results in a decrease in the fluid's velocity and an increase in temperature. The completed comparison analysis shows a sizable degree of agreement with the earlier investigation.

2.
Sci Rep ; 14(1): 7712, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38565580

ABSTRACT

This paper presents a numerical investigation of the flow of a non-Newtonian tangent hyperbolic nanofluid over a nonlinearly stretched surface, taking into account factors such as thermal radiation, prescribed surface temperature, and a chemical reaction mechanism. Furthermore, the analysis includes the consideration of both viscous dissipation and the influence of a magnetic field within a Darcy porous medium. A mathematical framework for addressing the issue, rooted in the principles of conserving momentum, energy, and mass. The MATHEMATICA tools were employed to apply the shooting technique in order to solve the modeled equations describing the temperature, velocity, and concentration fields of the proposed physical system. Graphs are used to illustrate how certain key parameters affect the profiles of concentration, velocity, and temperature. Data tables are utilized to display information pertaining to the local Nusselt number, local Sherwood number, and local skin friction coefficient. The present results have been confirmed through a comparison with previously published findings. This research holds significant importance as it focuses on the extensive utilization of tangent hyperbolic nanofluids in cooling electronic components that produce substantial heat during their operation. The observed pattern indicates that as the local Weisbsenberg number, magnetic number, local porous parameter, and power law index increase, there is a reduction in the boundary layer thickness. Conversely, in the instances of concentration and temperature distributions, an escalation in these parameters leads to an expansion of the boundary layer thickness.

3.
Sci Rep ; 13(1): 22691, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38114528

ABSTRACT

The main aim of this paper is to investigate the effect of non-uniform heat generation and viscous dissipation on the boundary layer flow of a power-law nanofluid over a nonlinear stretching sheet. Within the thermal domain, the analysis considers both thermal radiation and variable thermal conductivity. Through the use of similarity transformations, the governing boundary layer equations are transformed into a system of ODEs. The spectral collocation method (SCM) with shifted Vieta-Lucas polynomials (VLPs) is implemented to give an approximate expression for the derivatives and then use it to numerically solve the proposed system of equations. By employing this technique, the system of ODEs is converted into a system of nonlinear algebraic equations. The dimensionless temperature, concentration, and velocity are graphically presented and analyzed for various values of the relevant governing parameters. Through the presented graphical solutions, we can see that the main outcomes indicate that an increase in the power law index, thermal conductivity parameter, and radiation parameter leads to a noticeable decrease in the local Nusselt number, with reductions of around 0.05 percent, 0.23 percent, and 0.11 percent, respectively. In contrast, the Prandtl parameter demonstrates an opposing effect, elevating the local Nusselt number by about 0.1 percent. We validated the accuracy of the numerical solutions by comparing them in some special cases with existing literature.

4.
Heliyon ; 9(12): e22740, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38107321

ABSTRACT

The objective of this paper is to examine the flow of a non-Newtonian Maxwell fluid induced by a permeable stretching sheet in motion within a porous medium. The research incorporates the Cattaneo-Christov heat flux model to study the heat transfer process. The utilization of the Cattaneo-Christov heat flux approach becomes relevant in scenarios involving materials with high thermal conductivity or during short time intervals. Consequently, the current investigation holds significant importance. It is assumed that the viscosity of the Maxwell fluid changes exponentially as the temperature changes. The modeling of the physical phenomena being investigated takes into account the effects of a magnetic field, thermal radiation, velocity, and thermal slip conditions. In this study, the viscous dissipation phenomenon is taken into account because it can have notable impacts on the temperature and viscosity of the fluid, and is known to play a crucial role in fluid flow phenomena. The equations developed to model fluid flow are transformed into nonlinear ordinary differential equations through the use of appropriate similarity transformations. The focus of the research revolves around investigating the numerical solution of ordinary differential equations accompanied by boundary conditions using the shooting technique. The findings are then showcased via tables and graphs and scrutinized in order to arrive at conclusions. Furthermore, the precision of the present findings was evaluated by contrasting the heat transfer rate with outcomes that were previously published. Based on the obtained outcomes, it can be concluded that both the Eckert number and thermal radiation have a comparable enhancing influence, whereas the thermal relaxation parameter and thermal slip parameter exhibit opposing effects.

5.
Sci Rep ; 13(1): 14943, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37696940

ABSTRACT

This paper investigates the cavity-magnon steering and qubit-qubit steering of a hybrid quantum system consisting of a single-mode magnon, a two-qubit state, and a single-mode cavity field in the presence of their damping rates. The temporal wave vector of the system is obtained for the initial maximally entangled two-qubit state and initial vacuum state of the magnon and cavity modes. Additionally, the mathematical inequalities for obtaining the cavity-magnon steering and qubit-qubit steering are introduced. The findings reveal that steering between the magnon and cavity is asymmetric, while steering between the two qubits is symmetric in our system. Increasing the atom-field coupling improves steering from magnon to field, while reducing steering between the two qubits. Moreover, increasing magnon-field coupling enhances and elevates the lower bounds of qubit-qubit steering. Further, adding the damping rates causes deterioration of the cavity-magnon steering and qubit-qubit steering. However, the steering persistence is slightly greater when damping originates from the cavity field rather than the magnon modes based on the coupling parameters.

6.
Sci Rep ; 13(1): 15674, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37735576

ABSTRACT

The novelty and motivation of this research can be emphasized by examining how the heat transfer mechanism of a non-Newtonian Powell-Eyring fluid, which flows because of a stretched sheet, is affected by factors like viscous dissipation, the slip velocity phenomenon, and Joule heating. In addition, the investigation delves into the heat transfer behavior of the fluid flow when it comes into contact with a convectively heated stretched surface that is influenced by varying fluid properties. This analysis also takes into account the influence of changing fluid characteristics and the presence of magnetic field. The numerical solutions of modelled equations that governing the problem are detected using the shooting technique. Also, in order to confirm the validity of the present investigation, a proper comparison with certain published works as a particular case of the present model is presented, and a perfect agreement is noted. With the use of diagrams and tables, the flow problem's effective parameters are thoroughly discussed. Likewise, through a tabular representation, the values of the local Nusselt number and the skin-friction coefficient are computed and analyzed. Many significant conclusions can be drawn from numerical results. Most importantly, the local Nusselt number rises monotonically with both the surface convection parameter and the slip velocity parameter, but the local skin-friction coefficient has the opposite trend. The results indicate that the nanofluid temperature is enhanced by factors such as the surface convection parameter, magnetic field, and viscous dissipation. On the other hand, the slip velocity phenomenon leads to the opposite effect.

7.
Micromachines (Basel) ; 13(11)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36363899

ABSTRACT

The reasons why the model of non-Newtonian nanofluids is more applicable than other models, particularly those that take the porous medium into account, are studied here. Thus, we looked at the heat and mass transfer features of a non-Newtonian Williamson nanofluid flow due to a stretched sheet under the impact of chemical reactions, slip velocity, viscous dissipation, and the magnetic field in this article. The main focus is on a situation in which the properties of Williamson nanofluid, such as viscosity and thermal conductivity, change with temperature. After utilizing the shooting technique, a numerical solution to the suggested problem is provided. As a result, several graphs have been drawn to highlight how various physical characteristics that arise in the problems affect velocity, temperature, and concentration profiles. It was discovered that the heat and mass transmission processes are affected by the viscous dissipation phenomena, the slip velocity assumption, and the magnetic field. Theoretical and numerical results show a high level of qualitative agreement.

SELECTION OF CITATIONS
SEARCH DETAIL
...