Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 404, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38195739

ABSTRACT

The glycosylation of IgG plays a critical role during human severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, activating immune cells and inducing cytokine production. However, the role of IgM N-glycosylation has not been studied during human acute viral infection. The analysis of IgM N-glycosylation from healthy controls and hospitalized coronavirus disease 2019 (COVID-19) patients reveals increased high-mannose and sialylation that correlates with COVID-19 severity. These trends are confirmed within SARS-CoV-2-specific immunoglobulin N-glycan profiles. Moreover, the degree of total IgM mannosylation and sialylation correlate significantly with markers of disease severity. We link the changes of IgM N-glycosylation with the expression of Golgi glycosyltransferases. Lastly, we observe antigen-specific IgM antibody-dependent complement deposition is elevated in severe COVID-19 patients and modulated by exoglycosidase digestion. Taken together, this work links the IgM N-glycosylation with COVID-19 severity and highlights the need to understand IgM glycosylation and downstream immune function during human disease.


Subject(s)
COVID-19 , Humans , Glycosylation , SARS-CoV-2 , Glycosyltransferases , Complement System Proteins , Immunoglobulin M
2.
Hum Vaccin Immunother ; 19(3): 2267295, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37885158

ABSTRACT

In the field of immunology, a systems biology approach is crucial to understanding the immune response to infection and vaccination considering the complex interplay between genetic, epigenetic, and environmental factors. Significant progress has been made in understanding the innate immune response, including cell players and critical signaling pathways, but many questions remain unanswered, including how the innate immune response dictates host/pathogen responses and responses to vaccines. To complicate things further, it is becoming increasingly clear that the innate immune response is not a linear pathway but is formed from complex networks and interactions. To further our understanding of the crosstalk and complexities, systems-level analyses and expanded experimental technologies are now needed. In this review, we discuss the most recent immunoprofiling techniques and discuss systems approaches to studying the global innate immune landscape which will inform on the development of personalized medicine and innovative vaccine strategies.


Subject(s)
Vaccines , Immunity, Innate , Vaccination , Systems Biology
3.
Res Sq ; 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37398192

ABSTRACT

The glycosylation of IgG plays a critical role during human SARS-CoV-2, activating immune cells and inducing cytokine production. However, the role of IgM N-glycosylation has not been studied during acute viral infection in humans. In vitro evidence suggests that the glycosylation of IgM inhibits T cell proliferation and alters complement activation rates. The analysis of IgM N-glycosylation from healthy controls and hospitalized COVID-19 patients reveals that mannosylation and sialyation levels associate with COVID-19 severity. Specifically, we find increased di- and tri-sialylated glycans and altered mannose glycans in total serum IgM in severe COVID-19 patients when compared to moderate COVID-19 patients. This is in direct contrast with the decrease of sialic acid found on the serum IgG from the same cohorts. Moreover, the degree of mannosylation and sialylation correlated significantly with markers of disease severity: D-dimer, BUN, creatinine, potassium, and early anti-COVID-19 amounts of IgG, IgA, and IgM. Further, IL-16 and IL-18 cytokines showed similar trends with the amount of mannose and sialic acid present on IgM, implicating these cytokines' potential to impact glycosyltransferase expression during IgM production. When examining PBMC mRNA transcripts, we observe a decrease in the expression of Golgi mannosidases that correlates with the overall reduction in mannose processing we detect in the IgM N-glycosylation profile. Importantly, we found that IgM contains alpha-2,3 linked sialic acids in addition to the previously reported alpha-2,6 linkage. We also report that antigen-specific IgM antibody-dependent complement deposition is elevated in severe COVID-19 patients. Taken together, this work links the immunoglobulin M N-glycosylation with COVID-19 severity and highlights the need to understand the connection between IgM glycosylation and downstream immune function during human disease.

4.
Commun Biol ; 6(1): 188, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36805684

ABSTRACT

Herein, we studied the impact of empty LNP (eLNP), component of mRNA-based vaccine, on anti-viral pathways and immune function of cells from young and aged individuals. eLNP induced maturation of monocyte derived dendritic cells (MDDCs). We further show that eLNP upregulated CD40 and induced cytokine production in multiple DC subsets and monocytes. This coincided with phosphorylation of TANK binding kinase 1 (pTBK1) and interferon response factor 7 (pIRF7). In response to eLNP, healthy older adults (>65 yrs) have decreased CD40 expression, and IFN-γ output compared to young adults (<65 yrs). Additionally, cells from older adults have a dysregulated anti-viral signaling response to eLNP stimulation, measured by the defect in type I IFN production, and phagocytosis. Overall, our data show function of eLNP in eliciting DC maturation and innate immune signaling pathways that is impaired in older adults resulting in lower immune responses to SARS-CoV-2 mRNA-based vaccines.


Subject(s)
COVID-19 , Young Adult , Humans , Aged , SARS-CoV-2 , Antigen-Presenting Cells , CD40 Antigens , RNA, Messenger
5.
Res Sq ; 2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36380763

ABSTRACT

Despite the overwhelming success of mRNA-based vaccine in protecting against SARS-CoV-2 infection and reducing disease severity and hospitalization, little is known about the role lipid nanoparticles (LNP) play in initiating immune response. In this report we studied the adjuvantive impact of empty LNP with no mRNA cargo (eLNP) on anti-viral pathways and immune function of cells from young and aged individuals. We found that eLNP induced maturation of monocyte derived dendritic cells by measuring the expression of CD40, CD80, HLA-DR and production of cytokines including IFN-α,IL-6, IFN-γ, IL-12, and IL-21. Flow cytometry analysis of specific dendritic cell subsets showed that eLNP can induce CD40 expression and cytokine production in cDC1, cDC2 and monocytes. Empty LNP (eLNP) effects on dendritic cells and monocytes coincided with induction pIRF7 and pTBK1, which are both important in mitigating innate immune signaling. Interestingly our data show that in response to eLNP stimulus at 6 and 24 hrs, aged individuals have decreased CD40 expression and reduced IFN- γ output compared to young adults. Furthermore, we show that cDC1, cDC2, and CD14 dim CD16 + monocytes from healthy aged individuals have dysregulated anti-viral signaling response to eLNP stimulation as measured by the defect in type I IFN production, phosphorylation of IRF7, TBK-1, and immune function like phagocytosis. These data showed a novel function of eLNP in eliciting DC maturation and innate immune signaling pathways and that some of these functions are impaired in older individuals providing some suggestion of why older individuals (> 65 yrs of age) respond display lower immune responses and adverse events to SARS-CoV-2 mRNA-based vaccines.

SELECTION OF CITATIONS
SEARCH DETAIL
...