Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 278
Filter
1.
J Environ Sci (China) ; 144: 137-147, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38802225

ABSTRACT

The pollution and ecological risks posed by arsenic (As) entering the soil are the major environmental challenges faced by human beings. Soil phosphatase can serve as a useful indicator for assessing As contamination under specific soil pH conditions. However, the study of phosphatase kinetics in long-term field As-contaminated soil remains unclear, presenting a significant obstacle to the monitoring and evaluation of As pollution and toxicity. The purpose of this study was to determine phosphatase activity and explore enzyme kinetics in soils subjected to long-term field As contamination. Results revealed that the soil phosphatase activity varied among the tested soil samples, depending on the concentrations of As. The relationship between total As, As fractions and phosphatase activity was found to be significant through negative exponential function fitting. Kinetic parameters, including maximum reaction velocity (Vmax), Michaelis constant (Km) and catalytic efficiency (Vmax/Km), ranged from 3.14 × 10-2-53.88 × 10-2 mmol/(L·hr), 0.61-7.92 mmol/L, and 0.46 × 10-2-11.20 × 10-2 hr-1, respectively. Vmax and Vmax/Km of phosphatase decreased with increasing As pollution, while Km was less affected. Interestingly, Vmax/Km showed a significant negative correlation with all As fractions and total As. The ecological doses (ED10) for the complete inhibition and partial inhibition models ranged from 0.22-70.33 mg/kg and 0.001-55.27 mg/kg, respectively, indicating that Vmax/Km can be used as an index for assessing As pollution in field-contaminated soil. This study demonstrated that the phosphatase kinetics parameters in the soil's pH system were better indicators than the optimal pH for evaluating the field ecotoxicity of As.


Subject(s)
Arsenic , Environmental Monitoring , Soil Pollutants , Soil , Soil Pollutants/analysis , Arsenic/analysis , Soil/chemistry , Hydrogen-Ion Concentration , Environmental Monitoring/methods , Kinetics , Phosphoric Monoester Hydrolases/metabolism
2.
Article in English | MEDLINE | ID: mdl-38600781

ABSTRACT

The pyroligneous acid (PA), or wood vinegar, is a byproduct of wood carbonization during the slow pyrolysis process. PA is recognized globally as a safe compound for agriculture due to its various beneficial properties, such as antioxidant, antibacterial, antifungal, and termiticidal properties. However, the impact of different PA concentrations on beneficial soil organisms, such as earthworms has not been investigated. The present study aims to understand the effects of different PA concentrations on earthworm Eisenia fetida. The earthworms were exposed to nine different concentrations of PA in soils, including their control. The acute toxicity assay was performed after 14 days of exposure, and the chronic toxicity assay was performed up to 8 weeks after exposure. The results from the acute toxicity assay demonstrated no significant effect on earthworm mortality. The chronic toxicity assay showed that lower PA concentrations (0.01-0.2% of weight/weight PA in soil) promoted cocoon and juvenile production in soils, whereas higher PA concentrations (0.5 and 1%) had a negative effect. These findings highlight the potential of PA to enhance soil fertility at lower concentrations, up to 0.2%, by stimulating worm activity and subsequent manure production. The outcomes of this study have significant implications for the careful management of PA concentrations within agricultural operations.


Subject(s)
Oligochaeta , Soil Pollutants , Terpenes , Animals , Soil Pollutants/analysis , Fertility , Soil
3.
J Hazard Mater ; 470: 134232, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38593666

ABSTRACT

In a 120-day microcosm incubation experiment, we investigated the impact of arsenic contamination on soil microbial nutrient metabolism, focusing on carbon cycling processes. Our study encompassed soil basal respiration, key enzyme activities (particularly, ß-1,4-N-acetylglucosaminidase and phosphatases), microbial biomass, and community structure. Results revealed a substantial increase (1.21-2.81 times) in ß-1,4-N-acetylglucosaminidase activities under arsenic stress, accompanied by a significant decrease (9.86%-45.20%) in phosphatase activities (sum of acid and alkaline phosphatases). Enzymatic stoichiometry analysis demonstrated the mitigation of microbial C and P requirements in response to arsenic stress. The addition of C-sources alleviated microbial C requirements but exacerbated P requirements, with the interference amplitude increasing with the complexity of the C-source. Network analysis unveiled altered microbial nutrient requirements and an increased resistance process of microbes under arsenic stress. Microbial carbon use efficiency (CUE) and basal respiration significantly increased (1.17-1.59 and 1.18-3.56 times, respectively) under heavy arsenic stress (500 mg kg-1). Arsenic stress influenced the relative abundances of microbial taxa, with Gemmatimonadota increasing (5.5-50.5%) and Bacteroidota/ Nitrospirota decreasing (31.4-47.9% and 31.2-63.7%). Application of C-sources enhanced microbial resistance to arsenic, promoting cohesion among microorganisms. These findings deepen our understanding of microbial nutrient dynamics in arsenic-contaminated areas, which is crucial for developing enzyme-based toxicity assessment systems for soil arsenic contamination.


Subject(s)
Arsenic , Carbon , Soil Microbiology , Soil Pollutants , Arsenic/metabolism , Arsenic/toxicity , Carbon/metabolism , Soil Pollutants/metabolism , Soil Pollutants/toxicity , Bacteria/metabolism , Bacteria/drug effects , Phosphorus/metabolism , Soil/chemistry
4.
Environ Geochem Health ; 46(4): 132, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38483701

ABSTRACT

We determined the distribution, fate, and health hazards of dimethenamid-P, metazachlor, and pyroxasulfone, the effective pre-emergence herbicides widely used both in urban and agricultural settings globally. The rate-determining phase of sorption kinetics of these herbicides in five soils followed a pseudo-second-order model. Freundlich isotherm model indicated that the herbicides primarily partition into heterogeneous surface sites on clay minerals and organic matter (OM) and diffuse into soil micropores. Principal component analysis revealed that soil OM (R2, 0.47), sand (R2, 0.56), and Al oxides (R2, 0.33) positively correlated with the herbicide distribution coefficient (Kd), whereas clay (R2, ‒ 0.43), silt (R2, ‒ 0.51), Fe oxides (R2, ‒ 0.02), alkaline pH (R2, ‒ 0.57), and EC (R2, ‒ 0.03) showed a negative correlation with the Kd values. Decomposed OM rich in C=O and C-H functional groups enhanced herbicide sorption, while undecomposed/partially-decomposed OM facilitated desorption process. Also, the absence of hysteresis (H, 0.27‒0.88) indicated the enhanced propensity of herbicide desorption in soils. Leachability index (LIX, < 0.02-0.64) and groundwater ubiquity score (GUS, 0.02‒3.59) for the soils suggested low to moderate leaching potential of the herbicides to waterbodies, indicating their impact on water quality, nontarget organisms, and food safety. Hazard quotient and hazard index data for human adults and adolescents suggested that exposure to soils contaminated with herbicides via dermal contact, ingestion, and inhalation poses minimal to no non-carcinogenic risks. These insights can assist farmers in judicious use of herbicides and help the concerned regulatory authorities in monitoring the safety of human and environmental health.


Subject(s)
Herbicides , Soil Pollutants , Humans , Adolescent , Soil , Herbicides/toxicity , Herbicides/analysis , Clay , Farms , Soil Pollutants/analysis , Adsorption , Environmental Health , Oxides
5.
Crit Rev Biotechnol ; : 1-19, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38163946

ABSTRACT

Spent grains are one of the lignocellulosic biomasses available in abundance, discarded by breweries as waste. The brewing process generates around 25-30% of waste in different forms and spent grains alone account for 80-85% of that waste, resulting in a significant global waste volume. Despite containing essential nutrients, i.e., carbohydrates, fibers, proteins, fatty acids, lipids, minerals, and vitamins, efficient and economically viable valorization of these grains is lacking. Microbial fermentation enables the valorization of spent grain biomass into numerous commercially valuable products used in energy, food, healthcare, and biomaterials. However, the process still needs more investigation to overcome challenges, such as transportation, cost-effective pretreatment, and fermentation strategy. to lower the product cost and to achieve market feasibility and customer affordability. This review summarizes the potential of spent grains valorization via microbial fermentation and associated challenges.

6.
Mar Pollut Bull ; 200: 116058, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38278015

ABSTRACT

The uptake and distribution of copper, zinc, arsenic, and lead was examined in two rare Australian saltmarsh species, Tecticornia pergranulata and Wilsonia backhousei. The bioconcentration factors and translocation factors were generally much lower than one, except for the Zn translocation factors for T. pergranulata. When compared to other Australian saltmarsh taxa, these species generally accumulated the lowest levels observed among taxa, especially in terms of their BCFs. Essential metals tended to be regulated, while non-essential metals increased in concentration with dose during transport among compartments, a pattern not previously observed in Australian saltmarsh taxa. The uptake of metals into roots was mainly explained by total sediment metal loads as well as more acidic pH, increased soil organic matter, and decreased salinity. The low uptake and limited translocation observed in these rare taxa may offer a competitive advantage for their establishment and survival in the last urbanised populations, where legacy metal contamination acts as a selective pressure.


Subject(s)
Arsenic , Chenopodiaceae , Metalloids , Metals, Heavy , Soil Pollutants , New South Wales , Australia , Metals , Arsenic/analysis , Zinc/analysis , Metals, Heavy/analysis , Soil Pollutants/analysis , Soil , Metalloids/analysis
7.
Sci Total Environ ; 912: 169263, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38092216

ABSTRACT

Biochar is an efficient and inexpensive carrier for bacteria that stimulate plant development and growth. In this study, different biopolymer additives (cellulose, xanthan gum, chitin and tryptone) were tested with different addition ratios (1:0.1, 1:0.5 and 1:1) on further enhancing biochar capacity for supporting the growth and activity of Bradyrhizobium japonicum (CB1809). We utilized pine wood biochar (PWBC) pyrolyzed at 400 °C as the base inoculum carrier. The shelf life and survival rate of CB1809 were counted using the colony-forming unit (CFU) method for up to 120 days. Peat served as a standard reference material against which all treatments were compared. Subsequent experiments evaluated the ability of carrier inoculants to promote Glycine max L. (soybean) plant growth and nodulation under different watering regimes, i.e., 55 % water holding capacity (WHC) (D0), 30 % WHC (D1) and, 15 % WHC (D2) using sandy loam soil. Results revealed that among different additives; xanthan gum with 1:0.5 to PWBC [PWBC-xanthan gum(1:0.5)] was observed as a superior formulation in supporting rhizobial shelf life and survival rate of CB1809. In pot experiments, plants with PWBC-xanthan gum(1:0.5) formulation showed significant increase in various physiological characteristics (nitrogenase activity, chlorophyll pigments, membrane stability index, and relative water content), root architecture (root surface area, root average diameter, root volume, root tips, root forks and root crossings), and plant growth attributes (shoot/root dry biomass, shoot/root length, and number of nodules). Additionally, a reduced enrichment of isotopic signatures (δ13C, δ15N) was observed in plants treated with PWBC-xanthan gum(1:0.5), less enrichment of δ15N indicates an inverse link to nodulation and nitrogenase activity, while lower δ13C values indicates effective water use efficiency by plants during drought stress. These results suggest that biopolymers supplementation of the PWBC is useful in promoting shelf life or survival rate of CB1809.


Subject(s)
Charcoal , Rhizobium , Glycine max , Water , Soil , Biopolymers , Nitrogenase
8.
Environ Microbiol ; 25(12): 3387-3405, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37915109

ABSTRACT

In this study, we compared the genomes of three metal-resistant bacteria isolated from mercury-contaminated soil. We identified diverse and novel MGEs with evidence of multiple LGT events shaping their genomic structure and heavy metal resistance. Among the three metal-resistant strains, Sphingobium sp SA2 and Sphingopyxis sp SE2 were resistant to multiple metals including mercury, cadmium, copper, zinc and lead. Pseudoxanthomonas sp SE1 showed resistance to mercury only. Whole genome sequencing by Illumina and Oxford Nanopore technologies was undertaken to obtain comprehensive genomic data. The Sphingobium and Sphingopyxis strains contained multiple chromosomes and plasmids, whereas the Pseudoxanthomonas strain contained one circular chromosome. Consistent with their metal resistance profiles, the strains of Sphingobium and Sphingopyxis contained a higher quantity of diverse metal resistance genes across their chromosomes and plasmids compared to the single-metal resistant Pseudoxanthomonas SE1. In all three strains, metal resistance genes were principally associated with various novel MGEs including genomic islands (GIs), integrative conjugative elements (ICEs), transposons, insertion sequences (IS), recombinase in trio (RIT) elements and group II introns, indicating their importance in facilitating metal resistance adaptation in a contaminated environment. In the Pseudoxanthomonas strain, metal resistance regions were largely situated on a GI. The chromosomes of the strains of Sphingobium and Sphingopyxis contained multiple metal resistance regions, which were likely acquired by several GIs, ICEs, numerous IS elements, several Tn3 family transposons and RIT elements. Two of the plasmids of Sphingobium were impacted by Tn3 family transposons and ISs likely integrating metal resistance genes. The two plasmids of Sphingopyxis harboured transposons, IS elements, an RIT element and a group II intron. This study provides a comprehensive annotation of complex genomic regions of metal resistance associated with novel MGEs. It highlights the critical importance of LGT in the evolution of metal resistance of bacteria in contaminated environments.


Subject(s)
DNA Transposable Elements , Mercury , DNA Transposable Elements/genetics , Genome, Bacterial/genetics , Plasmids/genetics , Genomic Islands , Bacteria/genetics
9.
Curr Microbiol ; 80(12): 397, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37907801

ABSTRACT

The release of organic and inorganic contaminants into soil from industry, agriculture, and urbanization has become a major issue of international concern, particularly the heavy metals such as aluminum (Al) and the chemical phenanthrene (PHE). Due to their potential toxicity and non-biodegrade in the environment, efficient remediation methods are urgently needed. Recently, research has comprehensively discussed using plants and their endophytes in bioremediation efforts. Endophytic Bacillus sp. R1, isolated from Brassica napus permanently contaminated with Al and PHE, has growth-promoting properties and can efficiently detoxify these contaminants. The pot experiment indicated that compared to the Al combined PHE contaminated soil alone treatment, the R1 treatment led to increased Al accumulation in canola roots across different levels of PHE, Al, and combined PHE and Al contamination. However, Al accumulation in canola shoots and seeds remained unchanged for all treatments. Moreover, PHE in canola roots and shoots was decreased by R1 inoculation and thereby reducing 26.12-60.61% PHE translocated into canola seeds. Additionally, R1 inoculation significantly increased the proportion of extractable Al and, decreased the proportion of acid-soluble inorganic Al and humic-acid Al, but did not affect the concentration of organically complexed Al. In summary, endophyte R1 can degrade PHE, improve canola roots' Al uptake by increasing soil available Al, and scavenge the reactive oxygen species through production of antioxidant enzymes to help alleviate the toxicity of canola co-contaminated with aluminum and phenanthrene.


Subject(s)
Bacillus , Brassica napus , Phenanthrenes , Soil Pollutants , Bacillus/metabolism , Biodegradation, Environmental , Aluminum/toxicity , Aluminum/metabolism , Phenanthrenes/toxicity , Phenanthrenes/metabolism , Soil/chemistry , Soil Pollutants/metabolism , Plant Roots/metabolism
10.
Front Chem ; 11: 1141182, 2023.
Article in English | MEDLINE | ID: mdl-37881243

ABSTRACT

Total oxidisable precursor (TOP) assay can oxidise some per- and polyfluoroalkyl substances (PFASs) and their precursors, most of which cannot be quantitatively detected so far, and convert them to detectable PFASs, such as perfluoroalkyl acids (PFAAs). However, the conversion is constrained by the complexity of the target samples, including co-existent organics, unknown PFAS precursors, and background. In this study, the TOP assay is modified to increase the oxidation and conversion efficiency by changing the initial concentration of target sample, increasing oxidising doses, time, temperature, etc. The modified TOP assay is applied to test several aqueous film-forming foams (AFFF) and a PFAS-contaminated soil extract. The sum concentrations of the detectable PFASs are increased by up to ∼534× in the AFFF samples and ∼7× in the PFAS-contaminated soil extract. The detectable fluorotelomer sulfonate (FTS, such as 6:2/8:2 FTS) is accounted as an oxidation indicator to monitor the oxidation and conversion progress of the oxidisable PFASs precursors to the detectable PFASs. Overall, the modified TOP assay could be an appropriate method for identifying missing PFASs mass in complex matrices by detecting the PFASs precursors effectively.

11.
J Environ Manage ; 348: 119364, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37866190

ABSTRACT

A steep rise in global plastic production and significant discharge of plastic waste are expected in the near future. Plastics pose a threat to the ecosystem and human health through the generation of particulate plastics that act as carriers for other emerging contaminants, and the release of toxic chemical additives. Since plastic additives are not covalently bound, they can freely leach into the environment. Due to their occurrence in various environmental settings, the additives exert significant ecotoxicity. However, only 25% of plastic additives have been characterized for their potential ecological concern. Despite global market statistics highlighting the substantial environmental burden caused by the unrestricted production and use of plastic additives, information on their ecotoxicity remains incomplete. By focusing on the ecological impacts of plastic additives, the present review aims to provide detailed insights into the following aspects: (i) diversity and occurrence in the environment, (ii) leaching from plastic materials, (iii) trophic transfer, (iv) human exposure, (v) risks to ecosystem and human health, and (vi) legal guidelines and mitigation strategies. These insights are of immense value in restricting the use of toxic additives, searching for eco-friendly alternatives, and establishing or revising guidelines on plastic additives by global health and environmental agencies.


Subject(s)
Plastics , Water Pollutants, Chemical , Humans , Plastics/chemistry , Ecosystem , Environment , Water Pollutants, Chemical/analysis , Environmental Monitoring
12.
World J Microbiol Biotechnol ; 39(10): 283, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37594588

ABSTRACT

The extraordinary metabolic flexibility of anoxygenic phototrophic purple non-sulfur bacteria (PNSB) has been exploited in the development of various biotechnological applications, such as wastewater treatment, biohydrogen production, improvement of soil fertility and plant growth, and recovery of high-value compounds. These versatile microorganisms can also be employed for the efficient bioremediation of hazardous inorganic and organic pollutants from contaminated environments. Certain members of PNSB, especially strains of Rhodobacter sphaeroides and Rhodopseudomonas palustris, exhibit efficient remediation of several toxic and carcinogenic heavy metals and metalloids, such as arsenic, cadmium, chromium, and lead. PNSB are also known to utilize diverse biomass-derived lignocellulosic organic compounds and xenobiotics. Although biodegradation of some substituted aromatic compounds by PNSB has been established, available information on the involvement of PNSB in the biodegradation of toxic organic pollutants is limited. In this review, we present advancements in the field of PNSB-based bioremediation of heavy metals and organic pollutants. Furthermore, we highlight that the potential role of PNSB as a promising bioremediation tool remains largely unexplored. Thus, this review emphasizes the necessity of investing extensive research efforts in the development of PNSB-based bioremediation technology.


Subject(s)
Arsenic , Environmental Pollutants , Biodegradation, Environmental , Biomass , Proteobacteria
13.
Environ Pollut ; 336: 122376, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37586686

ABSTRACT

Nanoparticles have gained considerable attention as one of the pollutants released into the environment through consumer products. This study describes the sub-chronic and generational effects of TiO2 (rutile) nanoparticles on earthworms over a 252-day duration, with exposure ranging from 0.1 to 1000 mg kg-1. Results indicate that sub-chronic exposure (28 days) of TiO2 nanoparticles did not cause notable adverse effects on the weight, reproduction, and tissue accumulation in parent earthworms. However, the F1 generation displayed remarkable growth and maturity retardation during their early developmental stages, even at lower nano-TiO2 (rutile). Significant impacts on the reproduction of the F1 generation were observed solely at the highest concentration (1000 mg kg-1), which is predicted to be below the highest exposure scenario. Moreover, long-term (252 days) exposure resulted in considerable bioaccumulation of Ti metal in the F1 generation of E. fetida. This study uncovers the negative effects of TiO2 rutile nanoparticles on earthworms across two generations, with pronounced effects on the growth, maturity, and bioaccumulation in the F1 generation compared to the parent generation. These findings suggest the potential induction of toxic effects by TiO2 rutile nanoparticles, emphasizing the sensitivity of juvenile parameters over adult parameters in toxicity assessments. Furthermore, the study highlights the urgent need for comprehensive evaluations of the longer-term toxicity of nanoparticles on terrestrial organisms. Implementing multigenerational studies will contribute significantly to a better understanding of nanoparticle ecotoxicity on environmental organisms.

14.
Environ Res ; 235: 116616, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37437866

ABSTRACT

Our current understanding of the susceptibility of hazardous polycyclic aromatic hydrocarbons (PAHs) to anaerobic microbial degradation is very limited. In the present study, we obtained phenanthrene- and pyrene-degrading strictly anaerobic sulfate-reducing enrichments using contaminated freshwater lake sediments as the source material. The highly enriched phenanthrene-degrading culture, MMKS23, was dominated (98%) by a sulfate-reducing bacterium belonging to the genus Desulfovibrio. While Desulfovibrio sp. was also predominant (79%) in the pyrene-degrading enrichment culture, MMKS44, an anoxygenic purple non-sulfur bacterium, Rhodopseudomonas sp., constituted a significant fraction (18%) of the total microbial community. Phenanthrene or pyrene biodegradation by the enrichment cultures was coupled with sulfate reduction, as evident from near stoichiometric consumption of sulfate and accumulation of sulfide. Also, there was almost complete inhibition of substrate degradation in the presence of an inhibitor of sulfate reduction, i.e., 20 mM MoO42-, in the culture medium. After 180 days of incubation, about 79.40 µM phenanthrene was degraded in the MMKS23 culture, resulting in the consumption of 806.80 µM sulfate and accumulation of 625.80 µM sulfide. Anaerobic pyrene biodegradation by the MMKS44 culture was relatively slow. About 22.30 µM of the substrate was degraded after 180 days resulting in the depletion of 239 µM sulfate and accumulation of 196.90 µM sulfide. Biodegradation of phenanthrene by the enrichment yielded a metabolite, phenanthrene-2-carboxylic acid, suggesting that carboxylation could be a widespread initial step of phenanthrene activation under sulfate-reducing conditions. Overall, this novel study demonstrates the ability of sulfate-reducing bacteria (SRB), dwelling in contaminated freshwater sediments to anaerobically biodegrade three-ringed phenanthrene and highly recalcitrant four-ringed pyrene. Our findings suggest that SRB could play a crucial role in the natural attenuation of PAHs in anoxic freshwater sediments.


Subject(s)
Phenanthrenes , Polycyclic Aromatic Hydrocarbons , Anaerobiosis , Lakes , Sulfates , Phenanthrenes/metabolism , Polycyclic Aromatic Hydrocarbons/metabolism , Pyrenes , Bacteria/metabolism , Biodegradation, Environmental , Geologic Sediments
15.
Chemosphere ; 338: 139412, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37423412

ABSTRACT

This work assessed the adsorption performance of three common PFAS compounds (PFOA, PFOS and PFHxS) on two water treatment sludges (WTS) and two biochars (commercial biomass biochar and semi-pilot scale biosolids biochar). Of the two WTS samples included in this study, one was sourced from poly-aluminium chloride (PAC) and the other from alum (Al2(SO4)3). The results of experiments using a single PFAS for adsorption reinforced established trends in affinity - the shorter-chained PFHxS was less adsorbed than PFOS, and the sulphates (PFOS) were more readily adsorbed than the acid (PFOA). Interestingly, PAC WTS, showed an excellent adsorption affinity for the shorter chained PFHxS (58.8%), than the alum WTS and biosolids biochar at 22.6% and 41.74%, respectively. The results also showed that the alum WTS was less effective at adsorption than the PAC WTS despite having a larger surface area. Taken together, the results suggest that the hydrophobicity of the sorbent and the chemistry of the coagulant were critical factors for understanding PFAS adsorption on WTS, while other factors, such as the concentration of aluminium and iron in the WTS could not explain the trends seen. For the biochar samples, the surface area and hydrophobicity are believed to be the main drivers in the different performances. Adsorption from the solution containing multiple PFAS was also investigated with PAC WTS and biosolids biochar, demonstrating comparable performance on overall adsorption. However, the PAC WTS performed better with the short-chain PFHxS than the biosolids biochar. While both PAC WTS and biosolids biochar are promising candidates for adsorption, the study highlights the need to explore further the mechanisms behind PFAS adsorption, which could be a highly variable source to understand better the potential for WTS to be utilized as a PFAS adsorbent.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Purification , Sewage , Biosolids , Alkanesulfonates , Water Purification/methods , Aluminum Chloride
16.
Chemosphere ; 334: 139045, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37244552

ABSTRACT

Long-term input of agricultural chemicals such as pesticides into the soil can increase soil pollution, thereby affecting the productivity and quality of black soil. Triazine herbicide atrazine has been shown to have long-lasting residual effects in black soil. The atrazine residues affected soil biochemical properties, further leading to microbial metabolism restriction. It is necessary to explore the strategies to mitigate the limitations on microbial metabolism in atrazine-contaminated soils. Here, we evaluated the effect of the atrazine on microbial nutrient acquisition strategies as indicated by extracellular enzyme stoichiometry (EES) in four black soils. Atrazine degradation in soil followed the first-order kinetics model across various concentrations ranging from 10 to 100 mg kg-1. We found that the atrazine was negatively correlated with the EES for C-, N-, and P-acquisition. Vector lengths and angles decreased and increased significantly with an increase of atrazine concentration in tested black soils except for Lishu soils. Moreover, the vector angles were >45° for tested four black soils, indicating that atrazine residue had the greatest P-limitation on soil microorganisms. Interestingly, microbial C- and P-limitations with different atrazine concentrations showed a strong linear relationship, especially in Qiqihar and Nongan soils. Atrazine treatment significantly negatively affected microbial metabolic limitation. Soil properties and EES interaction explained up to 88.2% for microbial C-/P-limitation. In conclusion, this study confirms the EES as a useful method in evaluating the effects of pesticides on microbial metabolic limitations.


Subject(s)
Atrazine , Herbicides , Pesticides , Soil Pollutants , Atrazine/chemistry , Soil/chemistry , Soil Pollutants/analysis , Herbicides/chemistry , Pesticides/analysis , Biodegradation, Environmental , Soil Microbiology
17.
Sci Total Environ ; 882: 163364, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37031929

ABSTRACT

Lead (Pb) is a major environmental pollutant that threatens the soil environment and human health. Monitoring and assessing Pb toxicity on soil health are of paramount importance to the public. To use soil enzymes as biological indicators of Pb contamination, herein, the responses of soil ß-glucosidase (BG) in different pools of soil (total, intracellular and extracellular enzyme) to Pb contamination were investigated. The results indicated that the intra-BG (intracellular BG) and extra-BG (extracellular BG) responded differently to Pb contamination. While the addition of Pb caused a significant inhibition of the intra-BG activities, the extra-BG activities were only slightly inhibited. Pb showed a non-competitive inhibition to extra-BG, while both non-competitive and uncompetitive inhibition were observed for intra-BG in the tested soils. The dose-response modeling was used to calculate ecological dose ED10, which represents the concentration of Pb pollutant that causes a 10 % reduction in Vmax, to express the ecological consequences of Pb contamination. A positive correlation was found between ecological dose ED10 values of intra-BG and soil total nitrogen (p < 0.05), which suggests soil properties may influence Pb toxicity to soil BG. Based on the differences in ED10 and inhibition rate among different enzyme pools, this study suggests that the intra-BG is more sensitive for Pb contamination assessment. From this, we propose that intra-BG should be considered when evaluating Pb contamination using soil enzymes as indicators.


Subject(s)
Lead , Soil Pollutants , Humans , Lead/toxicity , Soil , beta-Glucosidase , Soil Pollutants/toxicity , Soil Pollutants/analysis , Environmental Pollution , Environmental Monitoring
18.
World J Microbiol Biotechnol ; 39(7): 173, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37115249

ABSTRACT

Deteriorating the quality of different parts of the ecosystem due to toxic metals is a serious global issue. Hexavalent chromium is a metal that can cause adverse effects on all living beings, including plants, animals, and microorganisms, on exposure to high concentrations for prolonged periods. Removing hexavalent chromium from various types of wastes is challenging; hence the present study investigated the use of bacteria incorporated with selected natural substrates in removing hexavalent chromium from water. Isolated Staphylococcus edaphicus KCB02A11 has shown higher removal efficiency with a wide hexavalent chromium range (0.025-8.5 mg/L) within 96 h. Incorporating the isolated strain with natural substrates commonly found in the environment (hay and wood husk) showed high removal potential [100% removal with 8.5 mg/L of Cr(VI)], even within less than 72 h, with the formation of biofilms on the used substrates applied for metal removal on a large scale for prolonged periods. This study is the first report investigating hexavalent chromium tolerance and removal by Staphylococcus edaphicus KCB02A11.


Subject(s)
Ecosystem , Water Pollutants, Chemical , Chromium/toxicity , Staphylococcus , Water Pollutants, Chemical/analysis , Adsorption
19.
Sci Total Environ ; 874: 162521, 2023 May 20.
Article in English | MEDLINE | ID: mdl-36868272

ABSTRACT

Fluorescein diacetate hydrolase (FDA hydrolase) is a reliable biochemical biomarker of changes in soil microbial activity and quality. However, the effect and mechanism of lower-ring polycyclic aromatic hydrocarbons (PAHs) on soil FDA hydrolase are still unclear. In this work, we investigated the effects of two typical lower-ring PAHs, naphthalene (Nap) and anthracene (Ant), on the activity and kinetic characteristics of FDA hydrolases in six soils differing in their properties. Results demonstrated that the two PAHs severely inhibited the activities of the FDA hydrolase. The values of Vmax and Km dropped by 28.72-81.24 % and 35.84-74.47 % at the highest dose of Nap, respectively, indicating an uncompetitive inhibitory mechanism. Under Ant stress, the values of Vmax decreased by 38.25-84.99 %, and the Km exhibited two forms, unchanged and decreased (74.00-91.61 %), indicating uncompetitive and noncompetitive inhibition. The inhibition constant (Ki) of the Nap and Ant ranged from 0.192 to 1.051 and 0.018 to 0.087 mM, respectively. The lower Ki of Ant compared to Nap indicated a higher affinity for enzyme-substrate complex, resulting in higher toxicity of Ant than Nap to soil FDA hydrolase. The inhibitory effect of Nap and Ant on soil FDA hydrolase was mainly affected by soil organic matter (SOM). SOM influenced the affinity of PAHs with enzyme-substrate complex, which resulted in a difference in PAHs toxicity to soil FDA hydrolase. The enzyme kinetic Vmax was a more sensitive indicator than enzyme activity to evaluate the ecological risk of PAHs. This research offers a strong theoretical foundation for quality control and risk evaluation of PAH-contaminated soils through a soil enzyme-based approach.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Polycyclic Aromatic Hydrocarbons/toxicity , Polycyclic Aromatic Hydrocarbons/analysis , Hydrolases , Soil/chemistry , Kinetics , Soil Pollutants/toxicity , Soil Pollutants/analysis
20.
Bull Environ Contam Toxicol ; 110(4): 73, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37000234

ABSTRACT

While analytical measurements provide the quantitative estimation of the total amount of metals present in a sample, they do not reflect the truly bioavailable fraction of metal which reflects the adverse biological effect. Hence the development of monitoring tools for detecting bioavailable toxic metals has become a priority in environmental monitoring activities. An optical whole-cell biosensor was constructed using the microalga Scenedesmus subspicatus MM1 immobilizing in inorganic silica hydrogels using the sol-gel technique to detect bioavailable Cadmium (Cd2+), Copper (Cu2+) and Zinc (Zn+) in freshwater. Conditions for optimum biosensor performance have been established regarding effective pH range, cell density, exposure time, and storage stability. The optimum response for the biosensor was dependent on the pH of the matrix, cell concentration and exposure time were derived. The biosensor was operational for four weeks. The limit of detection for the algal biosensor was determined as 9.0 × 10-1, 9.1 × 10-1, and 8.8 × 10-1 mg/L for Cd, Cu and Zn, respectively. Whole-cell cell biosensor will be highly useful since it comprises a single microalgal species able to detect the bioavailable content of Cd2+, Cu2+, and Zn2+ in freshwater.


Subject(s)
Biosensing Techniques , Metals, Heavy , Microalgae , Metals, Heavy/analysis , Cadmium/analysis , Biological Availability , Copper/analysis , Zinc/toxicity , Fresh Water , Environmental Monitoring/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...