Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Robot Surg ; 4: 25-31, 2017.
Article in English | MEDLINE | ID: mdl-28966928

ABSTRACT

BACKGROUND: Present treatments for ventricular tachycardia have significant drawbacks. To ameliorate these drawbacks, it may be advantageous to employ an epicardial robotic walker that performs mapping and ablation with precise control of needle insertion depth. This paper examines the feasibility of such a system. METHODS: This paper describes techniques for epicardial mapping and depth-controlled ablation with the robotic walker. The mapping technique developed for the current form of the system uses a single equivalent moving dipole model combined with the navigation capability of the walker. The intervention technique provides saline-enhanced radio frequency ablation, with sensing of needle penetration depth. The mapping technique was demonstrated in an artificial heart model with a simulated arrhythmia focus, followed by preliminary testing in the porcine model in vivo. The ablation technique was demonstrated in an artificial tissue model, and then in chicken breast tissue ex vivo. RESULTS: The walker located targets to within 2 mm using the SEMDM technique. No epicardial damage was found subsequent to the porcine trial in vivo. Needle insertion for ablation was controlled to within 2 mm of the target depth. Lesion size was repeatable, with diameter varying consistently in proportion to volume of saline injected. CONCLUSIONS: The experiments demonstrated the general feasibility of the techniques for mapping and depth-controlled ablation with the robotic walker.

2.
Neurosurgery ; 68(5): E1508; author reply E1508-9, 2011 May.
Article in English | MEDLINE | ID: mdl-21307783
3.
Telemed J E Health ; 16(1): 103-6, 2010.
Article in English | MEDLINE | ID: mdl-20155874

ABSTRACT

Telehealth applications are increasingly important in many areas of health education and training. In addition, they will play a vital role in biomedical research and research training by facilitating remote collaborations and providing access to expensive/remote instrumentation. In order to fulfill their true potential to leverage education, training, and research activities, innovations in telehealth applications should be fostered across a range of technology fronts, including online, on-demand computational models for simulation; simplified interfaces for software and hardware; software frameworks for simulations; portable telepresence systems; artificial intelligence applications to be applied when simulated human patients are not options; and the development of more simulator applications. This article presents the results of discussion on potential areas of future development, barries to overcome, and suggestions to translate the promise of telehealth applications into a transformed environment of training, education, and research in the health sciences.


Subject(s)
Health Education , Internet , Telemedicine/organization & administration , Artificial Intelligence , Cooperative Behavior , Humans , Inservice Training , Research , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...