Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cancer Radiother ; 25(2): 126-134, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33431297

ABSTRACT

BACKGROUND: To determine the effects of concurrent irradiation and T-DM1 on HER2-positive breast cancer cell lines. METHODS: Five human breast cancer cell lines (in vitro study) presenting various levels of HER2 expression were used to determine the potential therapeutic effect of T-DM1 combined with radiation. The toxicity of T-DM1 was assessed using viability assay and cell cycle analysis was performed by flow cytometry after BrdU incorporation. HER2 cells were irradiated at different dose levels after exposure to T-DM1. Survival curves were determined by cell survival assays (after 5 population doubling times). RESULTS: The results revealed that T-DM1 induced significant lethality due to the intracellular action of DM1 on the cell cycle with significant G2/M phase blocking. Even after a short time incubation, the potency of T-DM1 was maintained and even enhanced over time, with a higher rate of cell death. After irradiation alone, the D10 (dose required to achieve 10% cell survival) was significantly higher for high HER2-expressing cell lines than for low HER2-expressing cells, with a linearly increasing relationship. In combination with irradiation, using conditions that allow cell survival, T-DM1 does not induce a radiosensitivity. CONCLUSIONS: Although there is a linear correlation between intrinsic HER2 expression and radioresistance, the results indicated that T-DM1 is not a radiation-sensitizer under the experimental conditions of this study that allowed cell survival. However, further investigations are needed, in particular in vivo studies before reaching a final conclusion.


Subject(s)
Ado-Trastuzumab Emtansine/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Breast Neoplasms/metabolism , Breast Neoplasms/therapy , Chemoradiotherapy/methods , Receptor, ErbB-2/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/radiation effects , Culture Techniques , Female , Flow Cytometry/methods , G2 Phase Cell Cycle Checkpoints/drug effects , G2 Phase Cell Cycle Checkpoints/radiation effects , Humans , M Phase Cell Cycle Checkpoints/drug effects , M Phase Cell Cycle Checkpoints/radiation effects , Radiation Tolerance/drug effects , Time Factors
2.
Sci Rep ; 9(1): 10132, 2019 07 12.
Article in English | MEDLINE | ID: mdl-31300704

ABSTRACT

Radiotherapy is a cornerstone of cancer management. The improvement of spatial dose distribution in the tumor volume by minimizing the dose deposited in the healthy tissues have been a major concern during the last decades. Temporal aspects of dose deposition are yet to be investigated. Laser-plasma-based particle accelerators are able to emit pulsed-proton beams at extremely high peak dose rates (~109 Gy/s) during several nanoseconds. The impact of such dose rates on resistant glioblastoma cell lines, SF763 and U87-MG, was compared to conventionally accelerated protons and X-rays. No difference was observed in DNA double-strand breaks generation and cells killing. The variation of the repetition rate of the proton bunches produced an oscillation of the radio-induced cell susceptibility in human colon carcinoma HCT116 cells, which appeared to be related to the presence of the PARP1 protein and an efficient parylation process. Interestingly, when laser-driven proton bunches were applied at 0.5 Hz, survival of the radioresistant HCT116 p53-/- cells equaled that of its radiosensitive counterpart, HCT116 WT, which was also similar to cells treated with the PARP1 inhibitor Olaparib. Altogether, these results suggest that the application modality of ultrashort bunches of particles could provide a great therapeutic potential in radiotherapy.


Subject(s)
Glioblastoma/radiotherapy , Low-Level Light Therapy/methods , Poly (ADP-Ribose) Polymerase-1/metabolism , Cell Line, Tumor , Cell Survival/radiation effects , DNA Breaks, Double-Stranded/radiation effects , Dose Fractionation, Radiation , Glioblastoma/drug therapy , Glioblastoma/pathology , HCT116 Cells , Humans , Lasers , Low-Level Light Therapy/instrumentation , Phthalazines/pharmacology , Piperazines/pharmacology , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Protons , X-Rays
3.
Cancer Radiother ; 18(8): 790-8; quiz 799-802, 2014 Dec.
Article in French | MEDLINE | ID: mdl-25441760

ABSTRACT

Poly(ADP-ribosyl)ation is a ubiquitous protein modification involved in the regulation of many cellular processes that is carried out by the poly(ADP-ribose) polymerase (PARP) family. The PARP-1, PARP-2 and PARP-3 are the only PARPs known to be activated by DNA damage. The absence of PARP-1 and PARP-2, that are both activated by DNA damage and participate in DNA damage repair processes, results in hypersensitivity to ionizing radiation and alkylating agents. PARP inhibitors that compete with NAD(+) at the enzyme's activity site can be used in BRCA-deficient cells as single agent therapies acting through the principle of synthetic lethality exploiting these cells deficient DNA double-strand break repair. Preclinical data showing an enhancement of the response of tumors to radiation has been documented for several PARP inhibitors. However, whether this is due exclusively to impaired DNA damage responses or whether tumor re-oxygenation contributes to this radio-sensitization via the vasoactive effects of the PARP inhibitors remains to be fully determined. These promising results have paved the way for the evaluation of PARP inhibitors in combination with radiotherapy in phase I and phase II clinical trials for malignant glioma, head and neck, and breast cancers. A number of challenges remain that are also reviewed in this article, including the optimization of treatment schedules for combined therapies and the validation of biomarkers that will identify which patients will most benefit from either PARP inhibitors in combination with radiotherapy.


Subject(s)
Neoplasms/drug therapy , Neoplasms/radiotherapy , Poly(ADP-ribose) Polymerase Inhibitors , Combined Modality Therapy , DNA Repair , Genes, BRCA1 , Genes, BRCA2 , Humans , Neoplasms/genetics , Poly(ADP-ribose) Polymerases/physiology
4.
Proc Natl Acad Sci U S A ; 99(5): 2672-7, 2002 Mar 05.
Article in English | MEDLINE | ID: mdl-11854467

ABSTRACT

Telomeres of human chromosomes contain a G-rich 3'-overhang that adopts an intramolecular G-quadruplex structure in vitro which blocks the catalytic reaction of telomerase. Agents that stabilize G-quadruplexes have the potential to interfere with telomere replication by blocking the elongation step catalyzed by telomerase and can therefore act as antitumor agents. We have identified by Fluorescence Resonance Energy Transfer a new series of quinoline-based G-quadruplex ligands that also exhibit potent and specific anti-telomerase activity with IC50 in the nanomolar concentration range. Long term treatment of tumor cells at subapoptotic dosage induces a delayed growth arrest that depends on the initial telomere length. This growth arrest is associated with telomere erosion and the appearance of the senescent cell phenotype (large size and expression of beta-galactosidase activity). Our data show that a G-quadruplex interacting agent is able to impair telomerase function in a tumor cell thus providing a basis for the development of new anticancer agents.


Subject(s)
Apoptosis , DNA , Telomere/drug effects , Triazines/pharmacology , Cell Line, Transformed , Cellular Senescence , G-Quadruplexes , Humans , Ligands , Molecular Structure , Telomerase/metabolism , Triazines/chemistry , Tumor Cells, Cultured
5.
Int J Radiat Biol ; 76(7): 901-12, 2000 Jul.
Article in English | MEDLINE | ID: mdl-10923614

ABSTRACT

PURPOSE: To determine how radiation-induced arrest in G2 affects the response of mammalian cells to a challenging dose of radiation or to antitumour drugs producing DNA double-strand breaks. MATERIALS AND METHODS: V79 fibroblast survival to 5 Gy gamma-rays followed at intervals by 3 Gy irradiation or by contact with an equitoxic dose of neocarzinostatin or etoposide, was measured by clonogenic assays. The pattern of radiation-induced DNA double-strand breaks was determined by filter elution and CFGE (continuous field gel electrophoresis) or PFGE (pulsed-field gel electrophoresis) in G2-arrested cells as well as in nonpre-irradiated asynchronous or synchronized cells. The cell-cycle phase specificity of drug susceptibility was determined in synchronized HeLa cells. RESULTS: Cell kill by radiation-drug combined treatment varied markedly with the time elapsed after priming irradiation. Pre-irradiated, G2-arrested V79 fibroblasts demonstrated excess double-stranded DNA cleavage upon re-irradiation and hypersensitivity to drugs and radiation, although maximum resistance to both neocarzinostatin and etoposide in synchronized HeLa cells was in G2. This effect occurred in the megabase range only, with a peak around 4 Mbp; no change in the electrophoretic migration profile of DNA was observed below 1 Mbp. Moreover, the DNA migration profile and the yield of DNA cleavage in G2-arrested cells were close to those expected from S-phase cells. CONCLUSION: The available data suggest that mechanisms operating within the radiation-induced G2 block promote susceptibility to DNA double-strand break inducers at this stage. It is also proposed that the conformation of DNA in cells accumulated in G2 following irradiation bears resemblance to that for cells in S phase, due either to active repair mechanisms or to inhibition of chromosome disentanglement at the S-G2 transition.


Subject(s)
DNA Damage , DNA/radiation effects , G2 Phase/radiation effects , Animals , Cricetinae , DNA/drug effects , HeLa Cells , Humans
6.
Int J Radiat Biol ; 76(12): 1621-9, 2000 Dec.
Article in English | MEDLINE | ID: mdl-11133044

ABSTRACT

PURPOSE: To determine whether DNA-dependent protein kinase (DNA-PK) and poly(ADP-ribose) polymerase (PARP-1) are involved in eliciting the rapid fluctuations of radiosensitivity that have been observed when cells are exposed to short pulses of ionizing radiation. MATERIALS AND METHODS: The effect of DNA-PK and PARP-1 inhibitors on the survival of cells to split-dose irradiation was investigated using Chinese hamster V79 fibroblasts and human carcinoma SQ-20B cells. The responses of PARP-1 proficient and PARP-1 knockout mouse 3T3 fibroblasts were compared in a similar split-dose assay. RESULTS: Inactivation of DNA-PK by wortmannin potentiated radiation-induced cell kill but it did not alter the oscillatory, W-shaped pattern of early radiation response. In contrast, oscillatory radiation response was abolished by 3-aminobenzamide, a reversible inhibitor of enzymes containing a PARP catalytic domain. The oscillatory response was also lacking in PARP-1 knockout mouse 3T3 fibroblasts. CONCLUSION: The results show that PARP-1 plays a key role in the earliest steps of cell response to ionizing radiation with clonogenic ability or growth as endpoint. It is hypothesized that rapid poly(ADP-ribosylation) of target proteins, or recruitment of repair proteins by activated PARP-1 at the sites of DNA damage, bring about rapid chromatin remodelling that may affect the incidence of chromosomal damage upon re-irradiation.


Subject(s)
DNA-Binding Proteins , Poly(ADP-ribose) Polymerases/physiology , Protein Serine-Threonine Kinases/physiology , 3T3 Cells , Androstadienes/pharmacology , Animals , Benzamides/pharmacology , Catalytic Domain/radiation effects , Cell Line , Cell Survival/radiation effects , Chromatin/radiation effects , Cricetinae , DNA-Activated Protein Kinase , Dose-Response Relationship, Radiation , Enzyme Inhibitors/pharmacology , Fibroblasts/radiation effects , Gamma Rays/adverse effects , Humans , Mice , Nuclear Proteins , Radiation, Ionizing , Time Factors , Tumor Cells, Cultured , Wortmannin
7.
Biochem J ; 342 Pt 3: 555-66, 1999 Sep 15.
Article in English | MEDLINE | ID: mdl-10477267

ABSTRACT

Although glutamine synthesis has a major role in the control of acid-base balance and ammonia detoxification in the kidney of herbivorous species, very little is known about the regulation of this process. We therefore studied the influence of acetate, which is readily metabolized by the kidney and whose metabolism is accompanied by the production of bicarbonate, on glutamine synthesis from variously labelled [(13)C]alanine and [(14)C]alanine molecules in isolated rabbit renal proximal tubules. With alanine as sole exogenous substrate, glutamine and, to a smaller extent, glutamate and CO(2), were the only significant products of the metabolism of this amino acid, which was removed at high rates. Absolute fluxes through the enzymes involved in alanine conversion into glutamine were assessed by using a novel model describing the corresponding reactions in conjunction with the (13)C NMR, and to a smaller extent, the radioactive and enzymic data. The presence of acetate (5 mM) led to a large stimulation of fluxes through citrate synthase and alpha-oxoglutarate dehydrogenase. These effects were accompanied by increases in the removal of alanine, in the accumulation of glutamate and in flux through the anaplerotic enzyme pyruvate carboxylase. Acetate did not alter fluxes through glutamate dehydrogenase and glutamine synthetase; as a result, acetate did not change the accumulation of ammonia, which was negligible under both experimental conditions. We conclude that acetate, which seems to be an important energy-provider to the rabbit renal proximal tubule, simultaneously traps as glutamate the extra nitrogen removed as alanine, thus preventing the release of additional ammonia by the glutamate dehydrogenase reaction.


Subject(s)
Acetates/pharmacology , Alanine/metabolism , Citric Acid Cycle/drug effects , Glutamine/biosynthesis , Kidney Tubules, Proximal/drug effects , Animals , Carbon Dioxide/metabolism , Female , Kidney Tubules, Proximal/metabolism , Magnetic Resonance Spectroscopy , Models, Biological , Rabbits
8.
J Biol Chem ; 272(8): 4705-16, 1997 Feb 21.
Article in English | MEDLINE | ID: mdl-9030522

ABSTRACT

The rabbit kidney does not readily metabolize but synthesizes glutamine at high rates by pathways that remain poorly defined. Therefore, the metabolism of variously labeled [13C]- and [14C]glutamates has been studied in isolated rabbit kidney tubules with and without acetate. CO2, glutamine, and alanine were the main carbon and nitrogenous end products of glutamate metabolism but no ammonia accumulated. Absolute fluxes through enzymes involved in glutamate metabolism, including enzymes of four different cycles operating simultaneously, were assessed by combining mainly the 13C NMR data with a new model of glutamate metabolism. In contrast to a previous conclusion of Klahr et al. (Klahr, S., Schoolwerth, A. C., and Bourgoignie, J. J. (1972) Am. J. Physiol. 222, 813-820), glutamate metabolism was found to be initiated by glutamate dehydrogenase at high rates. Glutamate dehydrogenase also operated at high rates in the reverse direction; this, together with the operation of the glutamine synthetase reaction, masked the release of ammonia. Addition of acetate stimulated the operation of the "glutamate --> alpha-ketoglutarate --> glutamate" cycle and the accumulation of glucose but reduced both the net oxidative deamination of glutamate and glutamine synthesis. Acetate considerably increased flux through alpha-ketoglutarate dehydrogenase and citrate synthase at the expense of flux through phosphoenolpyruvate carboxykinase; acetate also caused a large decrease in flux through alanine aminotransferase, pyruvate dehydrogenase, and the "substrate cycle" involving oxaloacetate, phosphoenolpyruvate, and pyruvate.


Subject(s)
Glutamic Acid/metabolism , Kidney Tubules/metabolism , Animals , Magnetic Resonance Spectroscopy , Rabbits
10.
J Biol Chem ; 269(42): 26025-33, 1994 Oct 21.
Article in English | MEDLINE | ID: mdl-7929313

ABSTRACT

The metabolism of variously labeled [13C]- and [14C]glucoses, used at a physiological concentration (5 mM), has been studied in isolated rabbit kidney tubules both in the absence and the presence of NH4Cl. When present as sole exogenous substrate, glucose was metabolized at high rates and converted not only into CO2 and lactate but also, in contrast to a previous conclusion of Krebs (Krebs, H.A. (1935) Biochem. J. 29, 1951-1969), into glutamine. Absolute fluxes through enzymes of glycolysis and gluconeogenesis and of enzymes of three different cycles operating simultaneously were assessed by using a novel model describing reactions of glucose metabolism in conjunction with the 13C NMR and, to a lesser extent, the radioactive data obtained. The presence of NH4Cl (5 mM) caused a large stimulation of glucose removal and a large increase in lactate, glutamine, and glycerol 3-phosphate accumulation. Under this condition, the stimulation of glutamine synthesis was accompanied not by an activation of citrate synthesis but by an inhibition of flux through alpha-ketoglutarate dehydrogenase. The resulting depletion of citric acid cycle intermediates was compensated by anaplerosis at the level of pyruvate carboxylase. The "futile" cycle involving oxaloacetate, phosphoenolpyruvate, and pyruvate, which was intense in the presence of glucose alone, was greatly stimulated by the addition of NH4Cl.


Subject(s)
Glucose/metabolism , Glutamine/biosynthesis , Kidney Tubules/metabolism , Ammonium Chloride/pharmacology , Animals , Carbon Dioxide/metabolism , Female , Glycerol/metabolism , Glycerophosphates/metabolism , Glycolysis/drug effects , Lactates/metabolism , Lactic Acid , Magnetic Resonance Spectroscopy , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...