Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(5): 7627-7634, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36700883

ABSTRACT

Free-standing graphene-based paper-like materials have garnered significant interest for various applications because of their tunable physical and chemical properties, along with unique multilayered structures. Because of the layered configuration of graphene paper, characterization of the interactions between graphene sheets is critical for understanding its fundamental properties and applications. We investigate the interlayer cohesion energies in graphene papers using the mode I fracture concept with double cantilever beam specimens. Mechanical separation along the middle of the graphene paper thickness enables the evaluation of interlayer bonding strength in the paper. Starting from graphene oxide paper, the chemical reduction using hydroiodic acid tunes the interlayer cohesion energy from 11.30 ± 0.25 to 4.78 ± 0.18 J/m2 as the reduction time increases. The interlayer cohesion energy is correlated with the oxygen content, interlayer spacing, and electrical conductivity of graphene papers. This work provides a fundamental characterization of the interlayer cohesion energy of graphene paper and establishes the potential for tunability of the interlayer interactions in graphene paper.

2.
ACS Nano ; 15(1): 707-718, 2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33411506

ABSTRACT

Two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted considerable attention owing to their synergetic effects with other 2D materials, such as graphene and hexagonal boron nitride, in TMD-based heterostructures. Therefore, it is important to understand the physical properties of TMD-TMD vertical heterostructures for their applications in next-generation electronic devices. However, the conventional synthesis process of TMD-TMD heterostructures has some critical limitations, such as nonreproducibility and low yield. In this paper, we synthesize wafer-scale MoS2-WS2 vertical heterostructures (MWVHs) using plasma-enhanced chemical vapor deposition (PE-CVD) via penetrative single-step sulfurization discovered by time-dependent analysis. This method is available for fabricating uniform large-area vertical heterostructures (4 in.) at a low temperature (300 °C). MWVHs were characterized using various spectroscopic and microscopic techniques, which revealed their uniform nanoscale polycrystallinity and the presence of vertical layers of MoS2 and WS2. In addition, wafer-scale MWVHs diodes were fabricated and demonstrated uniform performance by current mapping. Furthermore, mode I fracture tests were performed using large double cantilever beam specimens to confirm the separation of the MWVHs from the SiO2/Si substrate. Therefore, this study proposes a synthesis mechanism for TMD-TMD heterostructures and provides a fundamental understanding of the interfacial properties of TMD-TMD vertical heterostructures.

SELECTION OF CITATIONS
SEARCH DETAIL
...