Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Pharmacol ; 59(5): 1012-21, 2001 May.
Article in English | MEDLINE | ID: mdl-11306682

ABSTRACT

Stimulation of histamine H(1) receptors produced a marked activation of inositol phospholipid hydrolysis, intracellular calcium mobilization, and stimulation of the c-fos promoter in CHO-H1 cells expressing the H(1) receptor at a level of 3 pmol/mg protein. The latter response was determined using a luciferase-based reporter gene (pGL3). This response to histamine was not sensitive to inhibition by pertussis toxin but could be completely attenuated by the protein kinase C (PKC) inhibitor Ro-31-8220, or by 24-h pretreatment with the phorbol esters phorbol 12,13-dibutyrate or phorbol-12-myristate-13-acetate. Several isoforms of PKC can be detected in CHO-H1 cells (alpha, delta, epsilon, mu, iota, zeta) but only PKCalpha and PKCdelta were down-regulated by prolonged treatment with phorbol esters. Of the two isoforms that were down-regulated, only protein kinase Calpha was translocated to CHO-H1 cell membranes after stimulation with either histamine or phorbol esters. The PKC inhibitor Gö 6976, which inhibits PKCalpha but not PKCdelta, was also able to significantly attenuate the c-fos-luciferase response to histamine. The mitogen-activated protein kinase kinase inhibitor PD 98059 markedly inhibited the response to histamine, suggesting that the likely major target for PKCalpha was the mitogen-activated protein kinase pathway. These data suggest that the histamine H(1) receptor can signal to the nucleus via PKCalpha after activation of phospholipase Cbeta.


Subject(s)
Cell Nucleus/physiology , Isoenzymes/physiology , Protein Kinase C/physiology , Receptors, Histamine H1/physiology , Signal Transduction/physiology , Animals , CHO Cells , Calcium/metabolism , Cricetinae , Cyclic AMP/metabolism , Gene Expression , MAP Kinase Kinase 1 , Mitogen-Activated Protein Kinase Kinases/metabolism , Protein Kinase C-alpha , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism
2.
Br J Pharmacol ; 115(8): 1415-24, 1995 Aug.
Article in English | MEDLINE | ID: mdl-8564200

ABSTRACT

1. The effect of adenosine A1-receptor and P2-purinoceptor agonists on [3H]-inositol phosphate accumulation has been investigated in CHO-K1 cells transfected with the human adenosine A1-receptor. 2. Adenosine receptor agonists stimulated [3H]-inositol phosphate accumulation in CHO-K1 cells with a rank potency order of N6-cyclopentyladenosine (CPA) > 5'-N-ethylcarboxamidoadenosine (NECA) > 2-chloroadenosine > N6-2-(4-aminophenyl) ethyladenosine (APNEA). The responses to both CPA and APNEA were antagonized by the A1 selective antagonist, 1,3-dipropylcyclopentylxanthine (DPCPX) yielding KD values of 1.2 nM and 4.3 nM respectively. 3. ATP, UTP and ATP gamma S were also able to stimulate [3H]-inositol phosphate accumulation in these cells with EC50 values of 1.9 microM, 1.3 microM and 5.0 microM respectively. 2-Methyl-thio-ATP was a weak agonist of this response (EC50 > 100 microM). 4. The [3H]-inositol phosphate response to CPA was completely attenuated by pertussis toxin treatment (24 h; 100 ng ml-1). In contrast, the responses to ATP, UTP and ATP gamma S were only reduced by circa 30% in pertussis toxin-treated cells. 5. The simultaneous addition of CPA and either ATP, UTP or ATP gamma S produced a large augmentation of [3H]-inositol phospholipid hydrolysis. This was due to an increase in the maximal response and was significantly greater than the predicted additive response for activation of these two receptor systems. The synergy was not observed in pertussis toxin-treated cells. 6. No synergy was observed between the [3H]-inositol phosphate responses to histamine and ATP in CHO-K1 cells transfected with the bovine histamine H1-receptor. In these cells the response to histamine was completely resistant to inhibition by pertussis toxin treatment. 7. This study provides a clear demonstration of a synergy between pertussis toxin-sensitive and insensitive receptor systems in a model cell system which is an ideal host for transfected cDNA sequences. This model system should provide a unique opportunity to unravel the mechanisms underlying this example of receptor cross-talk involving phospholipase C.


Subject(s)
Inositol Phosphates/metabolism , Purinergic P1 Receptor Agonists , Purinergic P2 Receptor Agonists , 2-Chloroadenosine/pharmacology , Adenosine/analogs & derivatives , Adenosine/pharmacology , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/pharmacology , Adenosine-5'-(N-ethylcarboxamide) , Animals , CHO Cells , Cattle , Cells, Cultured , Cricetinae , Dose-Response Relationship, Drug , Drug Interactions , Drug Synergism , Humans , Pertussis Toxin , Uridine Triphosphate/pharmacology , Virulence Factors, Bordetella/pharmacology , Xanthines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...