Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 13758, 2022 08 12.
Article in English | MEDLINE | ID: mdl-35962052

ABSTRACT

Quantifying failure events of oil and gas pipelines in real- or near-real-time facilitates a faster and more appropriate response plan. Developing a data-driven pipeline failure assessment model, however, faces a major challenge; failure history, in the form of incident reports, suffers from limited and missing information, making it difficult to incorporate a persistent input configuration to a supervised machine learning model. The literature falls short on the development of appropriate solutions to utilize incomplete databases and incident reports in the pipeline failure problem. This work proposes a semi-supervised machine learning framework which mines existing oil and gas pipeline failure databases. The proposed cluster-impute-classify (CIC) approach maps a relevant subset of the failure databases through which missing information in the incident report is reconstructed. A classifier is then trained on the fly to learn the functional relationship between the descriptors from a diverse feature set. The proposed approach, presented within an ensemble learning architecture, is easily scalable to various pipeline failure databases. The results show up to 91% detection accuracy and stable generalization ability against increased rate of missing information.


Subject(s)
Supervised Machine Learning , Databases, Factual
2.
Sci Rep ; 9(1): 11786, 2019 08 13.
Article in English | MEDLINE | ID: mdl-31409827

ABSTRACT

The regional nature of liquefaction records and limited information available for a certain set of explanatories motivate the development of complex prediction techniques. Indirect methods are commonly applied to incidentally derive a hyperplane to this binary classification problem. Machine learning approaches offer evolutionary prediction models which can be used as direct prediction methods to liquefaction occurrence. Ensemble learning is a recent advancement in this field. According to a predefined ensemble architecture, a number of learners are trained and their inferences are integrated to produce stable and improved generalization ability. However, there is a need to consider several aspects of the ensemble learning frameworks when exploiting them for a particular application; a comprehensive evaluation of an ensemble learner's generalization ability is required but usually overlooked. Also, the literature falls short on work utilizing ensemble learning in liquefaction prediction. To this extent, this work examines useful ensemble learning approaches for seismic-induced liquefaction prediction. A comprehensive analysis of fifteen ensemble models is performed. The results show improved prediction performance and diminishing uncertainty of ensembles, compared with single machine learning models.

SELECTION OF CITATIONS
SEARCH DETAIL
...