Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 156(4): 649-62, 2014 Feb 13.
Article in English | MEDLINE | ID: mdl-24486105

ABSTRACT

Reprogramming somatic cells to induced pluripotency by Yamanaka factors is usually slow and inefficient and is thought to be a stochastic process. We identified a privileged somatic cell state, from which acquisition of pluripotency could occur in a nonstochastic manner. Subsets of murine hematopoietic progenitors are privileged whose progeny cells predominantly adopt the pluripotent fate with activation of endogenous Oct4 locus after four to five divisions in reprogramming conditions. Privileged cells display an ultrafast cell cycle of ∼8 hr. In fibroblasts, a subpopulation cycling at a similar ultrafast speed is observed after 6 days of factor expression and is increased by p53 knockdown. This ultrafast cycling population accounts for >99% of the bulk reprogramming activity in wild-type or p53 knockdown fibroblasts. Our data demonstrate that the stochastic nature of reprogramming can be overcome in a privileged somatic cell state and suggest that cell-cycle acceleration toward a critical threshold is an important bottleneck for reprogramming. PAPERCLIP:


Subject(s)
Cellular Reprogramming , Granulocyte-Macrophage Progenitor Cells/cytology , Induced Pluripotent Stem Cells , Animals , Bone Marrow Cells , Cell Differentiation , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Knockdown Techniques , Genes, p53 , Granulocyte-Macrophage Progenitor Cells/metabolism , Mice
2.
Cell Rep ; 5(2): 471-81, 2013 Oct 31.
Article in English | MEDLINE | ID: mdl-24120864

ABSTRACT

The Ten-Eleven-Translocation 2 (TET2) gene, which oxidates 5-methylcytosine in DNA to 5-hydroxylmethylcytosine (5hmC), is a key tumor suppressor frequently mutated in hematopoietic malignancies. However, the molecular regulation of TET2 expression is poorly understood. We show that TET2 is under extensive microRNA (miRNA) regulation, and such TET2 targeting is an important pathogenic mechanism in hematopoietic malignancies. Using a high-throughput 3' UTR activity screen, we identify >30 miRNAs that inhibit TET2 expression and cellular 5hmC. Forced expression of TET2-targeting miRNAs in vivo disrupts normal hematopoiesis, leading to hematopoietic expansion and/or myeloid differentiation bias, whereas coexpression of TET2 corrects these phenotypes. Importantly, several TET2-targeting miRNAs, including miR-125b, miR-29b, miR-29c, miR-101, and miR-7, are preferentially overexpressed in TET2-wild-type acute myeloid leukemia. Our results demonstrate the extensive roles of miRNAs in functionally regulating TET2 and cellular 5hmC and reveal miRNAs with previously unrecognized oncogenic potential. Our work suggests that TET2-targeting miRNAs might be exploited in cancer diagnosis.


Subject(s)
DNA-Binding Proteins/metabolism , MicroRNAs/metabolism , Proto-Oncogene Proteins/metabolism , 3' Untranslated Regions , 5-Methylcytosine/analogs & derivatives , Animals , Cytosine/analogs & derivatives , Cytosine/metabolism , DNA-Binding Proteins/genetics , Dioxygenases , Down-Regulation , Hematologic Neoplasms/genetics , Hematologic Neoplasms/metabolism , Hematologic Neoplasms/pathology , Hematopoiesis , Humans , Mice , Phenotype , Proto-Oncogene Proteins/genetics
3.
Stem Cells ; 31(5): 895-905, 2013 May.
Article in English | MEDLINE | ID: mdl-23335078

ABSTRACT

Discovery of the cellular and molecular mechanisms of induced pluripotency has been hampered by its low efficiency and slow kinetics. Here, we report an experimental system with multicolor time-lapse microscopy that permits direct observation of pluripotency induction at single cell resolution, with temporal intervals as short as 5 minutes. Using granulocyte-monocyte progenitors as source cells, we visualized nascent pluripotent cells that emerge from a hematopoietic state. We engineered a suite of image processing and analysis software to annotate the behaviors of the reprogramming cells, which revealed the highly dynamic cell-cell interactions associated with early reprogramming. We observed frequent cell migration, which can lead to sister colonies, satellite colonies, and colonies of mixed genetic makeup. In addition, we discovered a previously unknown morphologically distinct two-cell intermediate of reprogramming, which occurs prior to other reprogramming landmarks. By directly visualizing the reprogramming process with E-cadherin inhibition, we demonstrate that E-cadherin is required for proper cellular interactions from an early stage of reprogramming, including the two-cell intermediate. The detailed cell-cell interactions revealed by this imaging platform shed light on previously unappreciated early reprogramming dynamics. This experimental system could serve as a powerful tool to dissect the complex mechanisms of early reprogramming by focusing on the relevant but rare cells with superb temporal and spatial resolution.


Subject(s)
Cell Communication/physiology , Cell Movement/physiology , Cellular Reprogramming/physiology , Animals , Cadherins/antagonists & inhibitors , Cadherins/metabolism , Cells, Cultured , Embryonic Stem Cells/cytology , Embryonic Stem Cells/physiology , Female , Mice , Mice, Inbred C57BL , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/physiology , Time-Lapse Imaging/methods
4.
Cell Rep ; 2(4): 1048-60, 2012 Oct 25.
Article in English | MEDLINE | ID: mdl-23084747

ABSTRACT

Hematopoietic stem and progenitor cells are often undesired targets of chemotherapies, leading to hematopoietic suppression requiring careful clinical management. Whether microRNAs control hematopoietic injury response is largely unknown. We report an in vivo gain-of-function screen and the identification of miR-150 as an inhibitor of hematopoietic recovery upon 5-fluorouracil-induced injury. Utilizing a bone marrow transplant model with a barcoded microRNA library, we screened for barcode abundance in peripheral blood of recipient mice before and after 5-fluorouracil treatment. Overexpression of screen-candidate miR-150 resulted in significantly slowed recovery rates across major blood lineages, with associated impairment of bone marrow clonogenic potential. Conversely, platelets and myeloid cells from miR-150 null marrow recovered faster after 5-fluorouracil treatment. Heterozygous knockout of c-myb, a conserved target of miR-150, partially phenocopied miR-150-forced expression. Our data highlight the role of microRNAs in controlling hematopoietic injury response and demonstrate the power of in vivo functional screens for studying microRNAs in normal tissue physiology.


Subject(s)
Bone Marrow Cells/cytology , MicroRNAs/metabolism , Animals , Blood Cells/metabolism , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Bone Marrow Transplantation , Cell Lineage , Cells, Cultured , Fluorouracil/toxicity , Gene Expression Profiling , Gene Library , Hematopoiesis , Heterozygote , Mice , MicroRNAs/genetics , Proto-Oncogene Proteins c-myb/antagonists & inhibitors , Proto-Oncogene Proteins c-myb/genetics , Proto-Oncogene Proteins c-myb/metabolism , Radiation, Ionizing
5.
Proc Natl Acad Sci U S A ; 109(41): 16636-41, 2012 Oct 09.
Article in English | MEDLINE | ID: mdl-23012470

ABSTRACT

Deregulation of microRNA (miRNA) expression can lead to cancer initiation and progression. However, limited information exists on the function of miRNAs in cancer maintenance. We examined these issues in the case of myeloproliferative diseases and neoplasms (MPN), a collection of hematopoietic neoplasms regarded as preleukemic, thereby representing early neoplastic states. We report here that microRNA-125a (miR-125a)-induced MPN display a complex manner of oncogene dependence. Following a gain-of-function genomics screen, we overexpressed candidate miR-125a in vivo, which led to phenotypes consistent with an atypical MPN characterized by leukocytosis, monocytosis, splenomegaly, and progressive anemia. The diseased MPN state could be recapitulated in a doxycycline-inducible mouse model. Upon doxycycline withdrawal, the primary MPN phenotypes rapidly resolved after the discontinuation of miR-125a overexpression. However, reinduction of miR-125a led to complex phenotypes, with some animals rapidly developing lethal anemia with extensive damages in the spleen. Forced expression of miR-125a resulted in elevated cellular tyrosine phosphorylation and hypersensitivity toward hematopoietic cytokines. Furthermore, we demonstrate that miR-125a targets multiple protein phosphatases. Our data demonstrate that miR-125a-induced MPN is addicted to its sustained overexpression, and highlight the complex nature of oncogenic miRNA dependence in an early neoplastic state.


Subject(s)
Bone Marrow Neoplasms/genetics , MicroRNAs/genetics , Myeloproliferative Disorders/genetics , Oncogenes/genetics , Animals , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Bone Marrow Neoplasms/metabolism , Bone Marrow Neoplasms/pathology , Bone Marrow Transplantation , Cell Line , Colony-Forming Units Assay , Doxycycline/pharmacology , Flow Cytometry , Gene Expression Regulation, Neoplastic/drug effects , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Interleukin-3/pharmacology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Mice , Mice, Inbred C57BL , Myeloproliferative Disorders/metabolism , Myeloproliferative Disorders/pathology , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...