Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 10(31): 4559-64, 2008 Aug 21.
Article in English | MEDLINE | ID: mdl-18665305

ABSTRACT

In a recent study Redlich et al. [Redlich et al., Chem. Phys. Lett. 2006, 420, 110] measured the velocity distribution of CO molecules desorbing from a NiO(100) surface after irradiation with an ultraviolet (UV) laser pulse. Due to the complexity of the involved processes no experimental evidence on the excitation and desorption mechanism could be obtained. In recent ab initio studies Mehdaoui et al. [Mehdaoui et al., Phys. Rev. Lett. 2007, 98, 037601] have shown that a 5sigma --> 2pi* (a (3)Pi) like transition within the CO adsorbate is most likely the crucial excitation step in the CO-NiO(100) system. At first sight this seems unlikely, since the interaction of CO molecules with the NiO(100) surface is very weak (-0.30 eV) and the corresponding CO gas phase transition energy is about 1.5 eV higher than the laser pulse energy of 4.66 eV used in the experiment. In this work we give further insight into relevant electronically excited states and identify the desorption mechanism by analysing the dynamical processes after laser excitation by quantum dynamical wave packet simulations on the basis of three-dimensional (3D) ab initio potential energy surfaces. The results corroborate the so far discussed excitation mechanism, which proposes the formation of a genuine C-Ni bond as the driving force for photodesorption, as the crucial excitation step.

2.
J Phys Chem A ; 111(50): 13233-7, 2007 Dec 20.
Article in English | MEDLINE | ID: mdl-18001012

ABSTRACT

Ab initio studies of the bonding of CO and NO to a NiO(100) surface are presented. As has been shown by Pacchioni et al. (Pacchioni, G.; Di Valentin, C.; Dominguez-Ariza, D.; Illas, F.; Bredow, T.; Klüner, T.; Staemmler, V. J. Phys.: Condens. Matter 2004, 16, S2497), density functional theory (DFT) fails in predicting accurately the bonding of CO and NO to a NiO(100) surface. In particular, in the case of the NO-NiO(100) system, DFT gives a physically incorrect picture of the bonding. Although the second-order complete active space perturbation theory (CASPT2) method gives qualitatively correct results, still, some uncertainty exists regarding the experimentally predicted value of the adsorption energy. We show that an accurate description of the bonding in the CO-NiO(100) and NO-NiO(100) systems, in fact, represents a challenge to theory, and we will identify the origin of the underestimated bond strength by using different ab initio approaches, and cluster models of systematically increasing size.

3.
Phys Rev Lett ; 98(3): 037601, 2007 Jan 19.
Article in English | MEDLINE | ID: mdl-17358728

ABSTRACT

The excitation mechanism in the CO-NiO(100) system induced by a uv-laser pulse has been investigated from first principles. For the laser-driven process, the relevant electronically excited states are identified, and it is shown that a transition within the CO molecule is the crucial excitation step rather than substrate mediated processes. A new mechanism is proposed, in which the formation of a genuine C-Ni bond in the excited state is the driving force for photodesorption rather than electrostatic interactions, as has been found in similar systems. This results in very high velocities of CO molecules desorbing from the NiO(100) surface after electronic relaxation.

4.
Phys Chem Chem Phys ; 8(13): 1584-92, 2006 Apr 07.
Article in English | MEDLINE | ID: mdl-16633643

ABSTRACT

The velocity distributions of the laser-induced desorption of NO molecules from an epitaxially grown film of NiO(100) on Ni(100) have been studied [Mull et al., J. Chem. Phys., 1992, 96, 7108]. A pronounced bimodality of velocity distributions has been found, where the NO molecules desorbing with higher velocities exhibit a coupling to the rotational quantum states J. In this article we present simulations of state resolved velocity distributions on a full ab initio level. As a basis for this quantum mechanical treatment a 4D potential energy surface (PES) was constructed for the electronic ground and a representative excited state, using a NiO5Mg(18+)13 cluster. The PESs of the electronic ground and an excited state were calculated at the CASPT2 and the configuration interaction (CI) level of theory, respectively. Multi-dimensional quantum wave packet simulations on these two surfaces were performed for different sets of degrees of freedom. Our key finding is that at least a 3D wave packet simulation, in which the desorption coordinate Z, polar angle theta and lateral coordinate X are included, is necessary to allow the simulation of experimental velocity distributions. Analysis of the wave packet dynamics demonstrates that essentially the lateral coordinate, which was neglected in previous studies [Klüner et al., Phys. Rev. Lett. 1998, 80, 5208], is responsible for the experimentally observed bimodality. An extensive analysis shows that the bimodality is due to a bifurcation of the wave packet on the excited state PES, where the motion of the molecule parallel to the surface plays a decisive role.

SELECTION OF CITATIONS
SEARCH DETAIL
...