ABSTRACT
Aim: Polyether pores were designed and tetracycline-loaded mesoporous silica materials, with their surface decorated by silver ions, were prepared, with the aim of reaching high antibacterial activity. Meanwhile, mammalian cell cytotoxicity and hemolytic effects were not observed using material concentrations tenfold the ones optimized for the bactericidal tests. Methods: Pore size was tuned by changing the polyether content and the surface was covalently decorated with silver thiolate groups. Results: We showed that the biological activity was enhanced by modulating silver ions and tetracycline releases by tuning silver thiolate group concentration on the silica surface and/or by modulating the pH of the environment. Conclusion: The combined use of tetracycline and silver ions with the mesoporous drug-delivery carrier was a very effective strategy against susceptible and tetracycline-resistant Escherichia coli bacteria.