Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-459800

ABSTRACT

The solution structure of SARS-CoV-2 nonstructural protein 7 (nsp7) at pH 7.0 has been determined by NMR spectroscopy. nsp7 is conserved in the coronavirinae subfamily and is an essential co-factor of the viral RNA-dependent RNA polymerase for active and processive replication. Similar to the previously deposited structures of SARS-CoV-1 nsp7 at acidic and basic conditions, SARS-CoV-2 nsp7 has a helical bundle folding at neutral pH. Remarkably, the 4 helix shows gradual dislocation from the core 2-3 structure as pH increases from 6.5 to 7.5. The protonation state of residue H36 contributes to the change of nsp7s intramolecular interactions, and thus, to the structural variation near-neutral pH. Spin-relaxation results revealed that all three loop regions in nsp7 possess dynamic properties associated with this structural variation.

2.
Forensic Sci Int ; 251: 77-82, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25863701

ABSTRACT

In the present study, a simple, fast and inexpensive method based on dispersive liquid-liquid microextraction (DLLME) prior to microvolume UV-vis spectrophotometry was developed for the preconcentration and determination of trinitrotoluene (TNT). The procedure is based on the color reaction of TNT in alkaline medium and extraction into CCl4 as an ion pair assisted by trioctylmethylammonium chloride, which also acts as a disperser agent. Experimental parameters affecting the DLLME method such as pH, concentration of sodium hydroxide, amount of trioctylmethylammonium chloride, type and volume of extraction solvent were investigated and optimized. Under the optimum conditions, the limit of detection (LOD) was 0.9ng/mL and the calibration curve was linear in the range of 3-200ng/mL. The relative standard deviation for 25 and 100ng/mL of TNT were 3.7% and 1.5% (n=6), respectively. The developed DLLME method was applied for the determination of TNT in different water and soil samples.


Subject(s)
Explosive Agents/analysis , Liquid Phase Microextraction , Spectrophotometry, Ultraviolet , Trinitrotoluene/analysis , Explosive Agents/chemistry , Limit of Detection , Quaternary Ammonium Compounds/chemistry , Soil/chemistry , Solvents/chemistry , Trinitrotoluene/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...