Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Endocr Disord ; 24(1): 43, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38549135

ABSTRACT

BACKGROUND: Several interventional studies have evaluated the potential anti-Mullerian hormone (AMH)-reduction effect of metformin. However, the results are still contradictory. In order to obtain a better viewpoint from them, this study aimed to comprehensively investigate the effects of metformin on AMH in the women with with polycystic ovarian syndrome (PCOS). METHODS: Scopus, PubMed/Medline, Web of Science, Cochrane, and Embase databases were searched using standard keywords to identify all controlled trials investigating the AMH levels following metformin administration. Pooled weighted mean difference and 95% confidence intervals were achieved by random-effects model analysis for the best estimation of outcomes. RESULTS: Sixteen studies with 484 participants' were included in this article. The pooled findings showed that AMH levels in the single arm clinical trials were significantly reduced (pooled WMD of -3.06 ng/ml; 95% confidence interval [CI] -4.03 to -2.10; P < 0.001) after use of metformin. Furthermore, compared to the control group, in randomized clinical trials, a reduced significant effect on AMH levels was observed following use of metformin (pooled WMD of -3.47 ng/ml; 95% CI -7.14 to -0.19; P = 0.047). Furthermore, higher reduction in the AMH levels with a metformin dosage ≤ 1500 mg/day and duration of treatment ≤ 12 weeks when compared to higher dosages and duration of intervention, observed in this meta-analysis. CONCLUSIONS: In conclusion, results this meta-analysis of clinical trials confirms the beneficial effect of the treatment with metformin in the reduction of the AMH levels in women.


Subject(s)
Metformin , Peptide Hormones , Polycystic Ovary Syndrome , Female , Humans , Polycystic Ovary Syndrome/drug therapy , Anti-Mullerian Hormone , Metformin/therapeutic use , Randomized Controlled Trials as Topic , Regression Analysis
2.
Anim Biotechnol ; 34(8): 3700-3707, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37139746

ABSTRACT

Spermatogenesis is the complex process of sperm production to transmit paternal genetic information to the subsequent generation. This process is determined by the collaboration of several germ and somatic cells, most importantly spermatogonia stem cells and Sertoli cells. To characterize germ and somatic cells in the tubule seminiferous contort in pig and consequently has an impact on the analysis of pig fertility. Germ cells were extracted from pig testis by enzymatic digestion before being expanded on Sandos inbred mice (SIM) embryo-derived thioguanine and ouabain resistant fibroblasts (STO) feeder layer supplemented with FGF, EGF, and GDNF. Immunohistochemistry (IHC) and immunocytochemistry (ICC) analysis for Sox9, Vimentin, and PLZF markers were performed to examine the generated colonies of pig testicular cells. Electron microscopy was also utilized to analyze the morphological features of the extracted pig germ cells. IHC analysis revealed that Sox9 and Vimentin were expressed in the basal compartment of the seminiferous tubules. Moreover, ICC results showed that the cells have low expression of PLZF while expressing Vimentin. The heterogeneity of the in vitro cultured cells was detected via morphological analysis by the electron microscope. In this experimental study, we tried to reveal exclusive information which obviously could be helpful for future success in the achievement of proper therapies against infertility and sterility as an important global issue.


Subject(s)
Spermatogonia , Testis , Male , Animals , Swine , Mice , Testis/metabolism , Vimentin/genetics , Vimentin/metabolism , Spermatogonia/metabolism , Semen , Cell Proliferation
SELECTION OF CITATIONS
SEARCH DETAIL
...