Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 130(12): 126203, 2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37027849

ABSTRACT

The coupling energies between the buckled dimers of the Si(001) surface were determined through analysis of the anisotropic critical behavior of its order-disorder phase transition. Spot profiles in high-resolution low-energy electron diffraction as a function of temperature were analyzed within the framework of the anisotropic two-dimensional Ising model. The validity of this approach is justified by the large ratio of correlation lengths, ξ_{∥}^{+}/ξ_{⊥}^{+}=5.2 of the fluctuating c(4×2) domains above the critical temperature T_{c}=(190.6±10) K. We obtain effective couplings J_{∥}=(-24.9±1.3) meV along the dimer rows and J_{⊥}=(-0.8±0.1) meV across the dimer rows, i.e., antiferromagneticlike coupling of the dimers with c(4×2) symmetry.

2.
Nanoscale ; 14(4): 1347-1362, 2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35014999

ABSTRACT

Synthesizing efficient electrode materials for water splitting and supercapacitors is essential for developing clean electrochemical energy conversion/storage devices. In the present work, we report the construction of a ruthenium cobalt oxide (RuCo2O4)/Ti3C2Tx MXene hybrid by electrophoretic deposition of Ti3C2Tx MXene on nickel foam (NF) followed by RuCo2O4 nanostructure growth through an electrodeposition process. Owing to the strong interactions between RuCo2O4 and Ti3C2Tx sheets, which are verified by density functional theory (DFT)-based simulations, RuCo2O4/Ti3C2Tx MXene@NF can serve as a bifunctional electrode for both water splitting and supercapacitor applications. This electrode exhibits outstanding electrocatalytic activity with low overpotentials of 170 and 68 mV at 100 A m-2 toward the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). The RuCo2O4/Ti3C2Tx MXene@NF-based alkaline water-splitting cell only requires 1.62 V to achieve a current density of 100 A m-2, which is much better than that of RuO2@NF and Pt/C@NF-assembled cells (1.75 V@100 A m-2). The symmetric supercapacitor (SSC)-assembled electrode displays a high specific capacitance of 229 F g-1 at 3 A g-1. The experimental results, complemented with theoretical insights, provide an effective strategy to prepare multifunctional materials for electrocatalysis and energy storage applications.

3.
Phys Chem Chem Phys ; 21(41): 23198-23208, 2019 Oct 24.
Article in English | MEDLINE | ID: mdl-31612886

ABSTRACT

Recent time-resolved transient absorption studies demonstrated that the rate of photoinduced interfacial charge transfer (CT) from Zn-phthalocyanine (ZnPc) to single-layer graphene (SLG) is faster than to double-layer graphene (DLG), in contrast to the expectation from Fermi's golden rule. We present the first time-domain non-adiabatic molecular dynamics (NA-MD) study of the electron injection process from photoexcited ZnPc molecules into SLG and DLG substrates. Our calculations suggest that CT occurs faster in the ZnPc/SLG system than in the ZnPc/DLG system, with 580 fs and 810 fs being the fastest components of the observed CT timescales, respectively. The computed timescales are in close agreement with those reported in the experiment. The computed CT timescales are determined largely by the magnitudes of the non-adiabatic couplings (NAC), which we find to be 4 meV and 2 meV, for the ZnPc/SLG and ZnPc/DLG systems, respectively. The transitions are driven mainly by the ZnPc out-of-plane bending mode at 1100 cm-1 and an overtone of fundamental modes in graphene at 2450 cm-1. We find that dephasing occurs on the timescale of 20 fs and is similar in both systems, so decoherence does not notably change the qualitative trends in the CT timescales. We highlight the importance of proper energy level alignment for capturing the qualitative trends in the CT dynamics observed in experiment. In addition, we illustrate several methodological points that are important for accurately modeling nonadiabatic dynamics in the ZnPc/FLG systems, such as the choice of surface hopping methodology, the use of phase corrections, NAC scaling, and the inclusion of Hubbard terms in the density functional and molecular dynamics calculations.

4.
J Am Chem Soc ; 135(5): 1912-8, 2013 Feb 06.
Article in English | MEDLINE | ID: mdl-23298308

ABSTRACT

A multiscale, multiphase thermokinetic model is used to show the effective control of the growth orientation of thin Si NWs for nanoelectronic devices enabled by nanoscale plasma chemistry. It is shown that very thin Si NWs with [110] growth direction can nucleate at much lower process temperatures and pressures compared to thermal chemical vapor deposition where [111]-directed Si NWs are predominantly grown. These findings explain a host of experimental results and offer the possibility of energy- and matter-efficient, size- and orientation-controlled growth of [110] Si NWs for next-generation nanodevices.


Subject(s)
Nanotechnology , Nanowires/chemistry , Silicon/chemistry , Temperature , Kinetics , Particle Size
5.
Adv Mater ; 25(1): 69-74, 2013 Jan 04.
Article in English | MEDLINE | ID: mdl-23108975

ABSTRACT

Low-temperature plasmas in direct contact with arbitrary, written linear features on a Si wafer enable catalyst-free integration of carbon nanotubes into a Si-based nanodevice platform and in situ resolution of individual nucleation events. The graded nanotube arrays show reliable, reproducible, and competitive performance in electron field emission and biosensing nanodevices.


Subject(s)
Biosensing Techniques/instrumentation , Nanotechnology/instrumentation , Nanotubes, Carbon/chemistry , Plasma Gases/chemistry , Silicon/chemistry
6.
ACS Nano ; 6(11): 10276-86, 2012 Nov 27.
Article in English | MEDLINE | ID: mdl-23083303

ABSTRACT

Graphene grown on metal catalysts with low carbon solubility is a highly competitive alternative to exfoliated and other forms of graphene, yet a single-layer, single-crystal structure remains a challenge because of the large number of randomly oriented nuclei that form grain boundaries when stitched together. A kinetic model of graphene nucleation and growth is developed to elucidate the effective controls of the graphene island density and surface coverage from the onset of nucleation to the full monolayer formation in low-pressure, low-temperature CVD. The model unprecedentedly involves the complete cycle of the elementary gas-phase and surface processes and shows a precise quantitative agreement with the recent low-energy electron diffraction measurements and also explains numerous parameter trends from a host of experimental reports. These agreements are demonstrated for a broad pressure range as well as different combinations of precursor gases and supporting catalysts. The critical role of hydrogen in controlling the graphene nucleation and monolayer formation is revealed and quantified. The model is generic and can be extended to even broader ranges of catalysts and precursor gases/pressures to enable the as yet elusive effective control of the crystalline structure and number of layers of graphene using the minimum amounts of matter and energy.


Subject(s)
Crystallization/methods , Graphite/chemistry , Models, Chemical , Models, Molecular , Nanostructures/chemistry , Nanostructures/ultrastructure , Computer Simulation , Gases/chemistry , Particle Size , Surface Properties
7.
ACS Nano ; 6(7): 5809-19, 2012 Jul 24.
Article in English | MEDLINE | ID: mdl-22679913

ABSTRACT

Effective control of morphology and electrical connectivity of networks of single-walled carbon nanotubes (SWCNTs) by using rough, nanoporous silica supports of Fe catalyst nanoparticles in catalytic chemical vapor deposition is demonstrated experimentally. The very high quality of the nanotubes is evidenced by the G-to-D Raman peak ratios (>50) within the range of the highest known ratios. Transitions from separated nanotubes on smooth SiO(2) surface to densely interconnected networks on the nanoporous SiO(2) are accompanied by an almost two-order of magnitude increase of the nanotube density. These transitions herald the hardly detectable onset of the nanoscale connectivity and are confirmed by the microanalysis and electrical measurements. The achieved effective nanotube interconnection leads to the dramatic, almost three-orders of magnitude decrease of the SWCNT network resistivity compared to networks of similar density produced by wet chemistry-based assembly of preformed nanotubes. The growth model, supported by multiscale, multiphase modeling of SWCNT nucleation reveals multiple constructive roles of the porous catalyst support in facilitating the catalyst saturation and SWCNT nucleation, consistent with the observed higher density of longer nanotubes. The associated mechanisms are related to the unique surface conditions (roughness, wettability, and reduced catalyst coalescence) on the porous SiO(2) and the increased carbon supply through the supporting porous structure. This approach is promising for the direct integration of SWCNT networks into Si-based nanodevice platforms and multiple applications ranging from nanoelectronics and energy conversion to bio- and environmental sensing.


Subject(s)
Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Silicon Dioxide/chemistry , Biosensing Techniques , Catalysis , Electric Conductivity , Gases/analysis , Microscopy, Electron, Scanning , Models, Chemical , Nanotechnology , Spectrum Analysis, Raman
8.
J Am Chem Soc ; 134(9): 4303-12, 2012 Mar 07.
Article in English | MEDLINE | ID: mdl-22299631

ABSTRACT

The possibility of fast, narrow-size/chirality nucleation of thin single-walled carbon nanotubes (SWCNTs) at low, device-tolerant process temperatures in a plasma-enhanced chemical vapor deposition (CVD) is demonstrated using multiphase, multiscale numerical experiments. These effects are due to the unique nanoscale reactive plasma chemistry (NRPC) on the surfaces and within Au catalyst nanoparticles. The computed three-dimensional process parameter maps link the nanotube incubation times and the relative differences between the incubation times of SWCNTs of different sizes/chiralities to the main plasma- and precursor gas-specific parameters and explain recent experimental observations. It is shown that the unique NRPC leads not only to much faster nucleation of thin nanotubes at much lower process temperatures, but also to better selectivity between the incubation times of SWCNTs with different sizes and chiralities, compared to thermal CVD. These results are used to propose a time-programmed kinetic approach based on fast-responding plasmas which control the size-selective, narrow-chirality nucleation and growth of thin SWCNTs. This approach is generic and can be used for other nanostructure and materials systems.


Subject(s)
Nanotechnology , Nanotubes, Carbon/chemistry , Catalysis , Gold/chemistry , Metal Nanoparticles/chemistry , Particle Size , Surface Properties , Temperature
9.
Nanoscale ; 4(5): 1497-508, 2012 Mar 07.
Article in English | MEDLINE | ID: mdl-21947357

ABSTRACT

Three case studies are presented to show low-temperature plasma-specific effects in the solution of (i) effective control of nucleation and growth; (ii) environmental friendliness; and (iii) energy efficiency critical issues in semiconducting nanowire growth. The first case (related to (i) and (iii)) shows that in catalytic growth of Si nanowires, plasma-specific effects lead to a substantial increase in growth rates, decrease of the minimum nanowire thickness, and much faster nanowire nucleation at the same growth temperatures. For nucleation and growth of nanowires of the same thickness, much lower temperatures are required. In the second example (related to (ii)), we produce Si nanowire networks with controllable nanowire thickness, length, and area density without any catalyst or external supply of Si building material. This case is an environmentally-friendly alternative to the commonly used Si microfabrication based on a highly-toxic silane precursor gas. The third example is related to (iii) and demonstrates that ZnO nanowires can be synthesized in plasma-enhanced CVD at significantly lower process temperatures than in similar neutral gas-based processes and without compromising structural quality and performance of the nanowires. Our results are relevant to the development of next-generation nanoelectronic, optoelectronic, energy conversion and sensing devices based on semiconducting nanowires.

10.
ACS Nano ; 5(10): 8372-82, 2011 Oct 25.
Article in English | MEDLINE | ID: mdl-21905692

ABSTRACT

Multiscale, multiphase numerical modeling is used to explain the mechanisms of effective control of chirality distributions of single-walled carbon nanotubes in direct plasma growth and suggest effective approaches to further improvement. The model includes an unprecedented combination of the plasma sheath, ion/radical transport, species creation/loss, plasma-surface interaction, heat transfer, surface/bulk diffusion, graphene layer nucleation, and bending/lift-off modules. It is shown that the constructive interplay between the plasma and the Gibbs-Thomson effect can lead to the effective nucleation and lift-off of small graphene layers on small metal catalyst nanoparticles. As a result, much thinner nanotubes with narrower chirality distributions can nucleate at much lower process temperatures and pressures compared to thermal CVD. This approach is validated by a host of experimental results, substantially reduces the amounts of energy and atomic matter required for the nanotube growth, and can be extended to other nanoscale structures and materials systems, thereby nearing the ultimate goal of energy- and matter-efficient nanotechnology.


Subject(s)
Nanotechnology/methods , Nanotubes, Carbon/chemistry , Plasma Gases/chemistry , Pressure , Stereoisomerism , Surface Properties , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...