Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Turk J Biol ; 46(6): 439-457, 2022.
Article in English | MEDLINE | ID: mdl-37529796

ABSTRACT

Gemcitabine is a broad-spectrum antimetabolite and a deoxycytidine analog recognized as a standard therapy alone or in combination with other antineoplastic agents in the therapy of pancreas cancer. Drug resistance following gemcitabine treatment is a common phenomenon; therefore, combinational therapy models are usually preferred. Pancreatic ductal adenocarcinoma, or pancreas cancer, is the fourth leading cause of cancer-related deaths worldwide. With the increasing incidence of pancreatic cancer every year, the mortality rate is also rising significantly because of late diagnosis, and limited chemotherapy options. Adjuvant chemotherapy after surgical resection is the typical option for the treatment of early pancreatic cancer. Mostly, 5-fluorouracil/leucovorin with irinotecan and oxaliplatin (FOLFIRINOX) and gemcitabine/nab-paclitaxel is used for the prognosis of advanced pancreatic cancer; however, chemoresistance usually occurs limiting the effectiveness of the chemotherapy. Therefore, most of the studies are focused on gemcitabine combination with other drugs to overcome the situation. As an apoptotic agent and a member of brassinosteroids, epibrassinolide (EBR) induces endoplasmic reticulum (ER) stress-dependent cell death in different cancer cells, as shown by our group. In this study, we aimed to enhance the gemcitabine apoptotic effect by EBR combined treatment in pancreatic cancer cells. EBR treatment reduced cell viability and inhibited cell proliferation in PANC-1, MIA PaCa-2, and AsPC-1 cells. Each pancreatic cancer cell gave different responses to the EBR treatment because of different aggressiveness. However, EBR induced apoptosis through increasing ROS generation, which was associated with ER stress in PANC-1 and MIA PaCa-2 cells. Gemcitabine alone reduced the cell viability of each pancreatic cancer cell line; however, combination with EBR led to further induction of apoptotic cell death in each pancreatic cancer cell line. In addition, combined treatment of gemcitabine and EBR further decreased N-cadherin and vimentin expressions, suggesting that epithelial-mesenchymal transition of pancreatic cells is reduced. In conclusion, EBR had therapeutic potential to avoid the gemcitabine-induced side effects during the treatment of pancreatic cancer.

2.
Turk J Biol ; 45(1): 1-16, 2021.
Article in English | MEDLINE | ID: mdl-33597817

ABSTRACT

Breast cancer, as a heterogenous malign disease among the top five leading causes of cancer death worldwide, is defined as by far the most common malignancy in women. It contributes to 25% of all cancer-associated deaths after menopause. Breast cancer is categorized based on the expression levels of cell surface and intracellular steroid receptors [estrogen, progesterone receptors, and human epidermal growth factor receptor (HER2)], and the treatment approaches frequently include antiestrogen, aromatase inhibitors, and Herceptin. However, the management and prevention strategies due to adverse side effects stress the patients. The unsuccessful treatments cause to raise the drug levels, leading to excessive toxic effects on healthy cells, and the development of multidrug-resistance (MDR) in the tumor cells against chemotherapeutic agents. MDR initially causes the tumor cells to gain a metastatic character, and subsequently, the patients do not respond adequately to treatment. Endoplasmic reticulum (ER) stress is one of the most important mechanisms supporting MDR development. ER stress-mediated chemotherapeutic resistance is very common in aggressive tumors. The in vitro and in vivo experiments on breast tumors indicate that ER stress-activated protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK)- activating transcription factor (ATF4) signal axis plays an important role in the survival of tumors and metastasis. Besides, ER stress-associated oncogenic microRNAs (miRNAs) induce chemoresistance in breast tumors. We aimed to have a look at the development of resistance mechanisms due to ER stress as well as the involvement of ER stress-associated miRNA regulation following the chemotherapeutic regimen in the human breast tumors. We also aimed to draw attention to potential molecular markers and therapeutic targets.

SELECTION OF CITATIONS
SEARCH DETAIL
...