Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Cent Sci ; 8(12): 1683-1694, 2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36589890

ABSTRACT

The water-soluble inositol phosphates (InsPs) represent a functionally diverse group of small-molecule messengers involved in a myriad of cellular processes. Despite their centrality, our understanding of human InsP metabolism is incomplete because the available analytical toolset to characterize and quantify InsPs in complex samples is limited. Here, we have synthesized and applied symmetrically and unsymmetrically 13C-labeled myo-inositol and inositol phosphates. These probes were utilized in combination with nuclear magnetic resonance spectroscopy (NMR) and capillary electrophoresis mass spectrometry (CE-MS) to investigate InsP metabolism in human cells. The labeling strategy provided detailed structural information via NMR-down to individual enantiomers-which overcomes a crucial blind spot in the analysis of InsPs. We uncovered a novel branch of InsP dephosphorylation in human cells which is dependent on MINPP1, a phytase-like enzyme contributing to cellular homeostasis. Detailed characterization of MINPP1 activity in vitro and in cells showcased the unique reactivity of this phosphatase. Our results demonstrate that metabolic labeling with stable isotopomers in conjunction with NMR spectroscopy and CE-MS constitutes a powerful tool to annotate InsP networks in a variety of biological contexts.

2.
Free Radic Res ; 53(7): 815-827, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31223033

ABSTRACT

Insulin resistance (IR) is known to precede onset of type 2 diabetes and increased oxidative stress appears to be a deleterious factor leading to IR. In this study, we evaluated ability of pterostilbene (PTS), a methoxylated analogue of resveratrol and a known antioxidant, to reverse palmitic acid (PA)-mediated IR in HepG2 cells. PTS prevented reactive oxygen species (ROS) formation and subsequent oxidative lipid damage by reducing the expression of NADPH oxidase 3 (NOX3) in PA treated HepG2 cells. Hepatic glucose production was used as a measure of IR and PTS reversed PA-mediated increase in hepatic glucose production by reducing expression of genes coding for gluconeogenic enzymes namely glucose-6-phosphatase (G6Pase), phosphoenolpyruvate carboxykinase (PEPCK), and pyruvate carboxylase (PC); and their transcription factors cAMP response element binding protein (CREB) and fork head class Box O (FOXO1) along with its coactivator peroxisome proliferator-activated receptor gamma co-activator-1 α (PGC1α). PTS reversed PA-mediated activation of c-Jun N-terminal kinase (JNK), which in turn altered insulin signalling pathway by phosphorylating IRS-1 at Ser 307, leading to inhibition of phosphorylation of Akt and GSK-3ß. PTS also reduced PA-mediated lipid accumulation by reducing expression of transcription factors SREBP1c and PPARα. SREBP1c activates genes involved in fatty acid and triglyceride synthesis while PPARα activates CPT1, a rate limiting enzyme for controlling entry and oxidation of fatty acids into mitochondria. PTS, however, did not influence PA uptake confirmed by using BODIPY-labelled fluorescent C16 fatty acid analogue. Thus, our data provides a possible mechanistic explanation for reversal of PA-mediated IR in HepG2 cells.


Subject(s)
Insulin Resistance/genetics , Palmitic Acid/adverse effects , Stilbenes/therapeutic use , Triglycerides/metabolism , Hep G2 Cells , Humans , Oxidative Stress , Stilbenes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...