Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 10187, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33986353

ABSTRACT

The severe outbreak of respiratory coronavirus disease 2019 has increased the significant demand of respiratory mask and its use become ubiquitous worldwide to control this unprecedented respiratory pandemic. The performance of a respiratory mask depends on the efficiency of the filter layer which is mostly made of polypropylene melt blown non-woven (PP-MB-NW). So far, very limited characterization data are available for the PPE-MB-NW in terms to achieve desired particulate filtration efficiency (PFE) against 0.3 µm size, which are imperative in order to facilitate the right selection of PP-MB-NW fabric for the development of mask. In present study, eight different kinds of PP-MB-NW fabrics (Sample A-H) of varied structural morphology are chosen. The different PP-MB-NW were characterized for its pore size and distribution by mercury porosimeter and BET surface area analyzer was explored first time to understand the importance of blind pore in PFE. The PP-MB-NW samples were characterized using scanning electron microscopy so as to know the surface morphology. The filtration efficiency, pressure drop and breathing resistance of various PP-MB-NW fabric samples are investigated in single and double layers combination against the particle size of 0.3, 0.5 and 1 µm. The samples which are having low pore dia, high solid fraction volume, and low air permeability has high filtration efficiency (> 90%) against 0.3 µm particle with high pressure drop (16.3-21.3 mm WC) and breathing resistance (1.42-1.92 mbar) when compared to rest of the samples. This study will pave the way for the judicial selection of right kind of filter layer i.e., PP-MB-NW fabric for the development of mask and it will be greatly helpful in manufacturing of mask in this present pandemic with desired PFE indicating considerable promise for defense against respiratory pandemic.


Subject(s)
Air Filters , COVID-19/prevention & control , Masks , Aerosols/isolation & purification , Air Filters/virology , Equipment Design , Humans , Masks/virology , Particle Size , Polypropylenes/chemistry , SARS-CoV-2/isolation & purification , Textiles/virology
2.
Parasit Vectors ; 12(1): 375, 2019 Jul 29.
Article in English | MEDLINE | ID: mdl-31358045

ABSTRACT

BACKGROUND: Insecticidal fabrics are important personal protective measures against mosquitoes, ticks and other disease vectors. In the absence of internationally accepted guidelines, bioefficacy tests have been carried out using continuous exposure and three minutes exposure bioassay methods. Recently, we have reported an improved method for bioefficacy testing of insecticidal fabrics, which involves continuous exposure of mosquitoes to the test fabrics. The present paper reports the comparative evaluation of the outcomes of the continuous exposure bioassay and the three minutes bioassay on the same fabric samples. METHODS: Permethrin content in the treated fabric samples was determined through HPLC analysis and NMR studies were performed to establish the stability of the analyte. Bioefficacy tests were carried out against dengue vector Aedes aegypti and malaria vector Anopheles stephensi as per the improved test method and the three minutes bioassay method. RESULTS: The permethrin doses in the fabric samples ranged from 60 to 3000 mg/m2 and 36.2% of permethrin was retained after 10 washings. The extraction and chromatographic analysis were not found to affect the stability of permethrin. In continuous exposure, all fabric samples showed bioefficacy, as the mean complete knockdown time for both Ae. aegypti (10.5-34.5 min) and An. stephensi (14.5-36.8 min) was ≤ 71.5 min. The same samples were found to be not effective when tested using the three minutes bioassay method, since the knockdown and mortality percentages were well below the required bioefficacy values. The bioefficacy of the fabric samples in terms of complete knockdown time was significantly higher against Ae. aegypti in comparison to An. stephensi. The mean complete knockdown time of Ae. aegypti increased to 48.3 min after 10 washings indicating a significant reduction in bioefficacy. CONCLUSIONS: Bioefficacy testing of the insecticidal fabrics using the improved method resulted in outcomes, which could be correlated better with the permethrin content in the fabric samples. The improved method is more appropriate for the testing of insecticidal fabrics than the three minutes bioassay method. Further evaluation of the improved method using different test arthropods could help in the formulation of specific guidelines for the bioefficacy testing of insecticidal fabrics.


Subject(s)
Insecticides , Mosquito Control/methods , Mosquito Vectors , Permethrin , Textiles/analysis , Aedes , Animals , Biological Assay/instrumentation , Biological Availability , Dengue/prevention & control , Insecticides/standards , Malaria/prevention & control , Mosquito Control/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...