Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 625(7993): 66-73, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38172364

ABSTRACT

The need for improved functionalities in extreme environments is fuelling interest in high-entropy ceramics1-3. Except for the computational discovery of high-entropy carbides, performed with the entropy-forming-ability descriptor4, most innovation has been slowly driven by experimental means1-3. Hence, advancement in the field needs more theoretical contributions. Here we introduce disordered enthalpy-entropy descriptor (DEED), a descriptor that captures the balance between entropy gains and enthalpy costs, allowing the correct classification of functional synthesizability of multicomponent ceramics, regardless of chemistry and structure. To make our calculations possible, we have developed a convolutional algorithm that drastically reduces computational resources. Moreover, DEED guides the experimental discovery of new single-phase high-entropy carbonitrides and borides. This work, integrated into the AFLOW computational ecosystem, provides an array of potential new candidates, ripe for experimental discoveries.

2.
Nat Commun ; 12(1): 5747, 2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34593798

ABSTRACT

High-entropy ceramics are attracting significant interest due to their exceptional chemical stability and physical properties. While configurational entropy descriptors have been successfully implemented to predict their formation and even to discover new materials, the contribution of vibrations to their stability has been contentious. This work unravels the issue by computationally integrating disorder parameterization, phonon modeling, and thermodynamic characterization. Three recently synthesized carbides are used as a testbed: (HfNbTaTiV)C, (HfNbTaTiW)C, and (HfNbTaTiZr)C. It is found that vibrational contributions should not be neglected when precursors or decomposition products have different nearest-neighbor environments from the high-entropy carbide.

3.
J Chem Phys ; 150(21): 214304, 2019 Jun 07.
Article in English | MEDLINE | ID: mdl-31176345

ABSTRACT

The vibrational properties of octahedrane (C12H12) are calculated using density-functional theory employing two different computational methods: an all-electron Gaussian orbital approach and a Naval Research Laboratory-tight-binding scheme (NRL-TB) coupled with molecular dynamics (NRL-TBMD). Both approaches yield vibrational densities of states for octahedrane that are in good general agreement with each other. NRL Molecular Orbital Library can also provide accurate infrared and Raman spectra which can be analyzed and compared with experimental results, while NRL-TBMD can be conveniently scaled up for larger finite-temperature simulations. This latter approach is used in our paper to produce a theoretical prediction for a stable room temperature structure of octahedrane.

4.
J Chem Inf Model ; 58(12): 2477-2490, 2018 12 24.
Article in English | MEDLINE | ID: mdl-30188699

ABSTRACT

A priori prediction of phase stability of materials is a challenging practice, requiring knowledge of all energetically competing structures at formation conditions. Large materials repositories-housing properties of both experimental and hypothetical compounds-offer a path to prediction through the construction of informatics-based, ab initio phase diagrams. However, limited access to relevant data and software infrastructure has rendered thermodynamic characterizations largely peripheral, despite their continued success in dictating synthesizability. Herein, a new module is presented for autonomous thermodynamic stability analysis, implemented within the open-source, ab initio framework AFLOW. Powered by the AFLUX Search-API, AFLOW-CHULL leverages data of more than 1.8 million compounds characterized in the AFLOW.org repository, and can be employed locally from any UNIX-like computer. The module integrates a range of functionality: the identification of stable phases and equivalent structures, phase coexistence, measures for robust stability, and determination of decomposition reactions. As a proof of concept, thermodynamic characterizations have been performed for more than 1300 binary and ternary systems, enabling the identification of several candidate phases for synthesis based on their relative stability criterion-including 17 promising C15 b-type structures and 2 half-Heuslers. In addition to a full report included herein, an interactive, online web application has been developed showcasing the results of the analysis and is located at aflow.org/aflow-chull .


Subject(s)
Informatics , Software , Thermodynamics , Computer Simulation , Drug Discovery , Materials Science , Models, Chemical
5.
Acta Crystallogr A Found Adv ; 74(Pt 3): 184-203, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29724965

ABSTRACT

Determination of the symmetry profile of structures is a persistent challenge in materials science. Results often vary amongst standard packages, hindering autonomous materials development by requiring continuous user attention and educated guesses. This article presents a robust procedure for evaluating the complete suite of symmetry properties, featuring various representations for the point, factor and space groups, site symmetries and Wyckoff positions. The protocol determines a system-specific mapping tolerance that yields symmetry operations entirely commensurate with fundamental crystallographic principles. The self-consistent tolerance characterizes the effective spatial resolution of the reported atomic positions. The approach is compared with the most used programs and is successfully validated against the space-group information provided for over 54 000 entries in the Inorganic Crystal Structure Database (ICSD). Subsequently, a complete symmetry analysis is applied to all 1.7+ million entries of the AFLOW data repository. The AFLOW-SYM package has been implemented in, and made available for, public use through the automated ab initio framework AFLOW.

6.
Nature ; 553(7687): 189-193, 2018 01 10.
Article in English | MEDLINE | ID: mdl-29323292

ABSTRACT

Nanostructured semiconductors emit light from electronic states known as excitons. For organic materials, Hund's rules state that the lowest-energy exciton is a poorly emitting triplet state. For inorganic semiconductors, similar rules predict an analogue of this triplet state known as the 'dark exciton'. Because dark excitons release photons slowly, hindering emission from inorganic nanostructures, materials that disobey these rules have been sought. However, despite considerable experimental and theoretical efforts, no inorganic semiconductors have been identified in which the lowest exciton is bright. Here we show that the lowest exciton in caesium lead halide perovskites (CsPbX3, with X = Cl, Br or I) involves a highly emissive triplet state. We first use an effective-mass model and group theory to demonstrate the possibility of such a state existing, which can occur when the strong spin-orbit coupling in the conduction band of a perovskite is combined with the Rashba effect. We then apply our model to CsPbX3 nanocrystals, and measure size- and composition-dependent fluorescence at the single-nanocrystal level. The bright triplet character of the lowest exciton explains the anomalous photon-emission rates of these materials, which emit about 20 and 1,000 times faster than any other semiconductor nanocrystal at room and cryogenic temperatures, respectively. The existence of this bright triplet exciton is further confirmed by analysis of the fine structure in low-temperature fluorescence spectra. For semiconductor nanocrystals, which are already used in lighting, lasers and displays, these excitons could lead to materials with brighter emission. More generally, our results provide criteria for identifying other semiconductors that exhibit bright excitons, with potential implications for optoelectronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...