Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Mater Adv ; 5(19): 7679-7689, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39247387

ABSTRACT

Hierarchical linker thermolysis has been used to enhance the porosity of monolithic UiO-66-based metal-organic frameworks (MOFs) containing 30 wt% 2-aminoterephthalic acid (BDC-NH2) linker. In this multivariate (i.e. mixed-linker) MOF, the thermolabile BDC-NH2 linker decomposed at ∼350 °C, inducing mesopore formation. The nitrogen sorption of these monolithic MOFs was probed, and an increase in gas uptake of more than 200 cm3 g-1 was observed after activation by heating, together with an increase in pore volume and mean pore width, indicating the creation of mesopores. Water sorption studies were conducted on these monoliths to explore their performance in that context. Before heating, monoUiO-66-NH2-30%-B showed maximum water vapour uptake of 61.0 wt%, which exceeded that reported for either parent monolith, while the highly mesoporous monolith (monoUiO-66-NH2-30%-A) had a lower maximum water vapour uptake of 36.2 wt%. This work extends the idea of hierarchical linker thermolysis, which has been applied to powder MOFs, to monolithic MOFs for the first time and supports the theory that it can enhance pore sizes in these materials. It also demonstrates the importance of hydrophilic functional groups (in this case, NH2) for improving water uptake in materials.

2.
Front Chem ; 11: 1215619, 2023.
Article in English | MEDLINE | ID: mdl-37614707

ABSTRACT

This work reports on the electrochemical behaviour of Fe and Zn based metal-organic framework (MOF) compounds, which are "doped" with chiral molecules, namely: cysteine and camphor sulfonic acid. Their electrochemical behaviour was thoroughly investigated via "solid-state" electrochemical measurements, exploiting an "ad hoc" tailored experimental set-up: a paste obtained by carefully mixing the MOF with graphite powder is deposited on a glassy carbon (GC) surface. The latter serves as the working electrode (WE) in cyclic voltammetry (CV) measurements. Infrared (IR), X-ray diffraction (XRD) and absorbance (UV-Vis) techniques are exploited for a further characterization of the MOFs' structural and electronic properties. The experimental results are then compared with DFT based quantum mechanical calculations. The electronic and structural properties of the MOFs synthesized in this study depend mainly on the type of metal center, and to a minor extent on the chemical nature of the dopant.

3.
Inorg Chem ; 62(23): 9077-9088, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37256920

ABSTRACT

The conversion of carbon dioxide to formate is of great importance for hydrogen storage as well as being a step to access an array of olefins. Herein, we have prepared a JMS-5 metal-organic framework (MOF) using a bipyridyl dicarboxylate linker, with the molecular formula [La2(bpdc)3/2(dmf)2(OAc)3]·dmf. The MOF was functionalized by cyclometalation using Pd(II), Pt(II), Ru(II), Rh(III), and Ir(III) complexes. All metal catalysts supported on JMS-5 showed activity for CO2 hydrogenation to formate, with Rh(III)@JMS-5a and Ir(III)@JMS-5a yielding 4319 and 5473 TON, respectively. X-ray photoelectron spectroscopy of the most active catalyst Ir(III)@JMS-5a revealed that the iridium binding energies shifted to lower values, consistent with formation of Ir-H active species during catalysis. The transmission electron microscopy images of the recovered catalysts of Ir(III)@JMS-5a and Rh(III)@JMS-5a did not show any nanoparticles. This suggests that the catalytic activity observed was due to Ir(III) and Rh(III). The high activity displayed by Ir(III)@JMS-5a and Rh(III)@JMS-5a compared to using the Ir(III) and Rh(III) complexes on their own is attributed to the stabilization of the Ir(III) and Rh(III) on the nitrogen and carbon atom of the MOF backbone.

4.
Dalton Trans ; 52(19): 6501-6514, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37097114

ABSTRACT

Hydrogenation of CO2 to formate is a vital reaction, because formate is an excellent hydrogen carrier, which yields blue hydrogen. Blue hydrogen is comparatively cheaper and attractive as the world envisions the hydrogen economy. In this work, two isostructural lanthanide-based MOFs (JMS-6 and JMS-7 [Ln(bpdc)3/2(dmf)2(H2O)2]n) were prepared and used as support materials for molecular catalysts. The bipyridyl MOF backbone were functionalised using pentamethylcyclopentadienyl iridium(III) chloride to give Ir(III)@JMS-6a and Ir(III)@JMS-7a. XPS of the functionalised MOFs show downfield shifts in the N 1s binding energy indicating successful grafting of the complex to the MOF. Hydrogenation experiments in the presence of an organic base showed that the functionalised MOFs were active towards converting CO2 to formate. Ir(III)@JMS-6a and Ir(III)@JMS-7a exhibited the highest turnover numbers of 813 and 621 respectively. ICP-OES indicated insignificant leaching during catalysis. TEM images and XPS data of the recovered catalyst ruled out the presence of Ir(0), confirming that the activity observed was attributed to the molecular Iridium(III) centres.

5.
Dalton Trans ; 52(19): 6300-6316, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37078960

ABSTRACT

In this work, we report the design of one-dimensional (1D) metal-organic framework containing Cu(II) and Ni(II) active sites using a N,N'-bis-(4-pyridyl)isophthalamide linker to form MOF 1 [Cu1/2(L1)(NO3-)·DMF] and MOF 2 [Ni1/2L1Cl]. The MOFs were evaluated as heterogeneous catalysts for the hydrogenation of furfural to furfuryl alcohol. MOF 2 catalyst showed impressive performance with conversion of FF (81%) and selectivity towards FA (100%). Post-experimental characterisation showed that the structural integrity of the MOF 2 was not altered after catalysis. The catalyst could also be reused several times without any significant loss in activity and selectivity. Furthermore, a possible plausible reaction mechanism of the reaction over MOF 2 was proposed.

6.
J Fluoresc ; 31(4): 1177-1190, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34032972

ABSTRACT

A luminescent Cobalt(II) co-crystal [Co13(PDC)16(H2O)24.7H2O] 1 (where H2PDC = 2,6-pyridinedicarboxylic acid) have been prepared by oven-heating and slow evaporation of solvent. Single crystal X-ray diffraction (SCXRD) analysis revealed that 1 is a mixture of complexes that crystallizes in the triclinic space group P-1 and the geometry around the Co(II) ions is octahedral. The structure is extensively imbued with hydrogen bonding that helps in stabilizing the complex. Thermogravimetric analysis indicates that 1 is thermally stable up to 364 οC. The luminescence properties of 1 revealed a strong emission centered at 437 nm (λex = 345 nm) assigned to ligand to metal charge transfer (LMCT). The luminescence sensing of 1 towards volatile organic molecules were also examined. However, 1 displayed a turn off towards methanol compared to other molecules with high quenching efficiency and low limit of detection (3.5 × 10-4 vol%). The results show excellent selectively and high sensitivity. Powder X-ray diffraction studies revealed that the structural integrity of the complex was maintained after exposure to methanol vapour. Theoretical studies also revealed small binding energy (-413.2 au) and low energy gap (1.19) for 1-CH3OH adduct.

7.
Front Chem ; 8: 581226, 2020.
Article in English | MEDLINE | ID: mdl-33251183

ABSTRACT

The reaction of Cd(NO3)2·4H2O and Zn(NO3)2·6H2O with the bipyridyl dicarboxylate ligand H2bpydc (2,2'-bipyridine-4,4'-dicarboxylic acid) afforded two porous metal organic frameworks [Cd(bpydc)2(DMF)2·2DMF]n (JMS-3) and [Zn(bpydc)(DMF)·DMF]n (JMS-4). X-ray diffraction studies revealed that both JMS-3 and JMS-4 crystallize in the monoclinic crystal. The MOFs possess 2D interdigited networks with (sql) topology. Sorption studies showed that the activated phase of JMS-3 had CO2 volumetric uptakes of 26.50 and 30.89 cm3 (STP) g-1 (1.18 and 1.39 mmol g-1) whist JMS-4 gave 10.96 and 16.08 cm3 (STP) g-1 (0.49 and 0.71 mmol g-1) at 298 and 273 K respectively.

8.
Inorg Chem ; 59(10): 6717-6728, 2020 May 18.
Article in English | MEDLINE | ID: mdl-32330382

ABSTRACT

In this work, we report the design of a two-dimensional (2D) isostructural metal-organic framework containing Pd(II) active sites, using a bipyridyl dicarboxylate linker (Mg(bpdc)(DMF)2PdCl2]n (Pd@Mg:JMS-2) and [Mn(bpdc)(DMF)2PdCl2]n(Pd@Mn:JMS-2)). The activated MOFs Pd@Mg:JMS-2a and Pd@Mn:JMS-2a were evaluated as heterogeneous catalysts for the hydrogenation of carbon dioxide (CO2) to formate. Under optimal conditions, the MOFs exhibited impressive catalytic activity with formate turnover numbers of 7272 and 9808 for Pd@Mg:JMS-2a and Pd@Mn:JMS-2a, respectively, after 24 h. These catalysts exhibited higher catalytic activity when compared to its homogeneous counterpart that was used as a linker during MOF synthesis. Post-experimental characterization showed that the structural integrity of the MOFs was not altered after catalysis. This work demonstrates that the catalytic activity of homogeneous systems can be enhanced under heterogeneous conditions by anchoring them on MOFs.

9.
RSC Adv ; 10(6): 3593-3605, 2020 Jan 16.
Article in English | MEDLINE | ID: mdl-35497735

ABSTRACT

The hydrogenation of carbon dioxide (CO2) to formic acid is of great importance due to its useful properties in the chemical industry. In this work, we have prepared a novel metal-organic framework (MOF), JMS-1, using bipyridyl dicarboxylate linkers, with molecular formula [La2(bpdc)3(DMF)3] n . Network analysis of JMS-1 revealed a new 7-connected topology (zaz). The MOF backbone of the activated phase (JMS-1a) was functionalized by cyclometalation using [RuCl2(p-cymene)]2 to produce Ru(ii)@JMS-1a. Both JMS-1a and Ru(ii)@JMS-1a were able to convert CO2 in the presence of hydrogen to formate. Ru(ii)@JMS-1a displayed outstanding conversion evidenced by a yield of 98% of formate under optimized conditions of total pressure 50 bar (CO2/H2 = 1 : 4, temperature 110 °C, time 24 h, 5 mmol KOH, 8 mL ethanol). This work is significant in providing new strategies of incorporating active catalytic centres in MOFs for efficient and selective conversion of CO2 to formate.

10.
Dalton Trans ; 41(14): 4224-31, 2012 Apr 14.
Article in English | MEDLINE | ID: mdl-22392605

ABSTRACT

Using 4-(pyridin-4-yl)benzoic acid, 44pba (1) as a ligand, two new metal-coordination networks [Co(4)(44pba)(8)](n)·[(DMF)(3)·(EtOH)(0.25)·(H(2)O)(4)](n) (2) and [Ni(4)(44pba)(8)](n)·[(DMF)(3.5)·(EtOH)·(H(2)O)(1.5)](n) (3) were synthesized by solvothermal methods and structurally characterized. Compounds 2 and 3 are isostructural but differ in their solvent content. Each is a 2D-network which forms a spiral parallel to [001], giving rise to three distinct large channels, accounting for some 47% of the unit cell volume. Both 2 and 3 display water-induced phase transformations with chromotropism, which has been confirmed by TGA and XRPD analysis. Solvatochromism in 2 is also evident with crystals exhibiting a range of colours depending on the solvent included. This phenomenon has been characterized using TGA, XRPD and UV-vis spectrophotometry.

SELECTION OF CITATIONS
SEARCH DETAIL