Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38499448

ABSTRACT

Gastric cancer (GC) is a prominent cause of cancer-related mortality worldwide. Long noncoding RNA (lncRNA) maternal expression gene3 (MEG3) participates in numerous signaling pathways by targeting the miRNA-mRNA axis. Studies on human tumors have demonstrated that the antibiotic Ciprofloxacin induces cell cycle changes, programmed cell death, and growth suppression. In this study, we transfected MEG3 lncRNA and Ciprofloxacin into the MKN-45 GC cell line. qRT-PCR was employed to evaluate the effects on the specific microRNA and mRNA. The wound healing test, MTT assay, and flow cytometry were used to assess the impact of their administration on cell migration, viability, and apoptosis, respectively. Research showed that miR-147 expression fell even more after MEG3 lncRNA transfection, leading to an increase in B-cell lymphoma 2 (BCL-2) levels. Ciprofloxacin transfection did not significantly affect the axis, except for MEG3, which led to its slight upregulation. MEG3 lncRNA inhibited the migration of MKN-45 cells compared to the control group. When MEG3 lncRNA was coupled with Ciprofloxacin, there was a significant reduction in cell migration compared to untreated groups and controls. MTT assay and flow cytometry demonstrated that MEG3 lncRNA decreased cell viability and triggered apoptosis. Simultaneous administration of MEG3 lncRNA and Ciprofloxacin revealed a significant reduction in cell viability caused by increased apoptosis obtained from MTT or flow cytometry assays. Modulating the miR-147-BCL-2 axis decreases cell migration and survival while promoting cell death. In conclusion, combining MEG3 lncRNA with Ciprofloxacin may be an effective therapeutic approach for GC treatment by influencing the miR-14-BCl-2 axis, resulting in reduced cell viability, migration, and increased apoptosis.

2.
Life Sci ; 336: 122322, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38042283

ABSTRACT

Autoimmune diseases are a diverse set of conditions defined by organ damage due to abnormal innate and acquired immune system responses. The pathophysiology of autoimmune disorders is exceedingly intricate and has yet to be fully understood. The study of long non-coding RNAs (lncRNAs), non-protein-coding RNAs with at least 200 nucleotides in length, has gained significant attention due to the completion of the human genome project and the advancement of high-throughput genomic approaches. Recent research has demonstrated how lncRNA alters disease development to different degrees. Although lncRNA research has made significant progress in cancer and generative disorders, autoimmune illnesses are a relatively new research area. Moreover, lncRNAs play crucial functions in differentiating various immune cells, and their potential relationships with autoimmune diseases have received growing attention. Because of the importance of Th17/Treg axis in auto-immune disease development, in this review, we discuss various molecular mechanisms by which lncRNAs regulate the differentiation of Th17/Treg cells. Also, we reviewed recent findings regarding the several approaches in the application of lncRNAs in the diagnosis and treatment of human autoimmune diseases, as well as current challenges in lncRNA-based therapeutic approaches to auto-immune diseases.


Subject(s)
Autoimmune Diseases , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Autoimmune Diseases/diagnosis , Autoimmune Diseases/genetics , Autoimmune Diseases/therapy
3.
Gene ; 889: 147795, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-37708921

ABSTRACT

Bladder cancer (BC) is the 10th most common malignancy in worldwide, with substantial mortality and morbidity if not treated effectively. According to various research, inflammatory circumstances majorly impact the microenvironment of bladder cancer, and the chronic presence of cytokines and chemokines promotes tumor progression. In this investigation, we explored the impact of cell-free culture supernatant ofEscherichia colistrain 536 on inflammatory cytokines and chemokines in bladder cancer model microarray data (GSE162251). Then we examined in silico outcomes on human bladder cancer cell line 5637 to verify and extrapolate findings. This investigation revealed for the first time that this compound has potent suppressor effects on interleukin 1 beta (IL-1ß), C-C motif chemokine ligand 2 (CCL2), and C-X3-C motif chemokine ligand 1 (CX3CL1) gene expression as well as increased NAD(P)H quinone dehydrogenase 1 (NQO1), as an anti-oxidant agent, gene expression in 4, 8, and 24 h. Moreover, we confirmed that c-MYC, a member of the MYC proto-oncogene family, gene expression reduced in 5637 cells in 4 h and then followed up its expression in 8 and 24 h. In addition, our investigation demonstrated that the supernatant raised the BCL2-Associated X Protein/B-cell lymphoma 2 (BAX/BCL2) ratio, and subsequent flow cytometry analysis demonstrated that the supernatant induction apoptosis and necrosis. In conclusion, our findings demonstrate that this compound is a potential candidate for the suppression of bladder cancer progression.


Subject(s)
Escherichia coli , Urinary Bladder Neoplasms , Humans , Escherichia coli/metabolism , Ligands , Cell Line , Cytokines/metabolism , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism , Inflammation , Cell Line, Tumor , Tumor Microenvironment
4.
Biomed Pharmacother ; 165: 115242, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37531786

ABSTRACT

Bladder cancer (BC) is a common and serious type of cancer that ranks among the top ten most prevalent malignancies worldwide. Due to the high occurrence rate of BC, the aggressive nature of cancer cells, and their resistance to medication, managing this disease has become a growing challenge in clinical care. Long noncoding RNAs (lncRNAs) are a group of RNA transcripts that do not code for proteins and are more than 200 nucleotides in length. They play a significant role in controlling cellular pathways and molecular interactions during the onset, development and progression of different types of cancers. Recent advancements in high-throughput gene sequencing technology have led to the identification of various differentially expressed lncRNAs in BC, which indicate abnormal expression. In this review, we summarize that these lncRNAs have been found to impact several functions related to the development of BC, including proliferation, cell growth, migration, metastasis, apoptosis, epithelial-mesenchymal transition, and chemo- and radio-resistance. Additionally, lncRNAs may improve prognosis prediction for BC patients, indicating a future use for them as prognostic and diagnostic biomarkers for BC patients. This review highlights that genetic tools and anti-tumor agents, such as CRISPR/Cas systems, siRNA, shRNA, antisense oligonucleotides, and vectors, have been created for use in preclinical cancer models. This has led to a growing interest in using lncRNAs based on positive research findings.


Subject(s)
RNA, Long Noncoding , Urinary Bladder Neoplasms , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , RNA, Small Interfering , Drug Resistance , Gene Expression Regulation, Neoplastic
SELECTION OF CITATIONS
SEARCH DETAIL
...