Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 140(41): 13503-13513, 2018 10 17.
Article in English | MEDLINE | ID: mdl-30234293

ABSTRACT

Halogen bonding is the noncovalent interaction of halogen atoms in which they act as electron acceptors. Whereas three-center hydrogen bond complexes, [D···H···D]+ where D is an electron donor, exist in solution as rapidly equilibrating asymmetric species, the analogous halogen bonds, [D···X···D]+, have been observed so far only to adopt static and symmetric geometries. Herein, we investigate whether halogen bond asymmetry, i.e., a [D-X···D]+ bond geometry, in which one of the D-X bonds is shorter and stronger, could be induced by modulation of electronic or steric factors. We have also attempted to convert a static three-center halogen bond complex into a mixture of rapidly exchanging asymmetric isomers, [D···X-D]+ ⇄ [D-X···D]+, corresponding to the preferred form of the analogous hydrogen bonded complexes. Using 15N NMR, IPE NMR, and DFT, we prove that a static, asymmetric geometry, [D-X···D]+, is obtained upon desymmetrization of the electron density of a complex. We demonstrate computationally that conversion into a dynamic mixture of asymmetric geometries, [D···X-D]+ ⇄ [D-X···D]+, is achievable upon increasing the donor-donor distance. However, due to the high energetic gain upon formation of the three-center-four-electron halogen bond, the assessed complex strongly prefers to form a dimer with two static and symmetric three-center halogen bonds over a dynamic and asymmetric halogen bonded form. Our observations indicate a vastly different preference in the secondary bonding of H+ and X+. Understanding the consequences of electronic and steric influences on the strength and geometry of the three-center halogen bond provides useful knowledge on chemical bonding and for the development of improved halonium transfer agents.

2.
J Am Chem Soc ; 138(31): 9853-63, 2016 08 10.
Article in English | MEDLINE | ID: mdl-27265247

ABSTRACT

We have investigated the influence of electron density on the three-center [N-I-N](+) halogen bond. A series of [bis(pyridine)iodine](+) and [1,2-bis((pyridine-2-ylethynyl)benzene)iodine](+) BF4(-) complexes substituted with electron withdrawing and donating functionalities in the para-position of their pyridine nitrogen were synthesized and studied by spectroscopic and computational methods. The systematic change of electron density of the pyridine nitrogens upon alteration of the para-substituent (NO2, CF3, H, F, Me, OMe, NMe2) was confirmed by (15)N NMR and by computation of the natural atomic population and the π electron population of the nitrogen atoms. Formation of the [N-I-N](+) halogen bond resulted in >100 ppm (15)N NMR coordination shifts. Substituent effects on the (15)N NMR chemical shift are governed by the π population rather than the total electron population at the nitrogens. Isotopic perturbation of equilibrium NMR studies along with computation on the DFT level indicate that all studied systems possess static, symmetric [N-I-N](+) halogen bonds, independent of their electron density. This was further confirmed by single crystal X-ray diffraction data of 4-substituted [bis(pyridine)iodine](+) complexes. An increased electron density of the halogen bond acceptor stabilizes the [N···I···N](+) bond, whereas electron deficiency reduces the stability of the complexes, as demonstrated by UV-kinetics and computation. In contrast, the N-I bond length is virtually unaffected by changes of the electron density. The understanding of electronic effects on the [N-X-N](+) halogen bond is expected to provide a useful handle for the modulation of the reactivity of [bis(pyridine)halogen](+)-type synthetic reagents.

SELECTION OF CITATIONS
SEARCH DETAIL
...