Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
PeerJ Comput Sci ; 10: e1834, 2024.
Article in English | MEDLINE | ID: mdl-38660201

ABSTRACT

Identification of the Internet of Things (IoT) devices has become an essential part of network management to secure the privacy of smart homes and offices. With its wide adoption in the current era, IoT has facilitated the modern age in many ways. However, such proliferation also has associated privacy and data security risks. In the case of smart homes and smart offices, unknown IoT devices increase vulnerabilities and chances of data theft. It is essential to identify the connected devices for secure communication. It is very difficult to maintain the list of rules when the number of connected devices increases and human involvement is necessary to check whether any intruder device has approached the network. Therefore, it is required to automate device identification using machine learning methods. In this article, we propose an accuracy boosting model (ABM) using machine learning models of random forest and extreme gradient boosting. Featuring engineering techniques are employed along with cross-validation to accurately identify IoT devices such as lights, smoke detectors, thermostat, motion sensors, baby monitors, socket, TV, security cameras, and watches. The proposed ensemble model utilizes random forest (RF) and extreme gradient boosting (XGB) as base learners with adaptive boosting. The proposed ensemble model is tested with extensive experiments involving the IoT Device Identification dataset from a public repository. Experimental results indicate a higher accuracy of 91%, precision of 93%, recall of 93%, and F1 score of 93%.

2.
Sci Rep ; 14(1): 4891, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38418822

ABSTRACT

To address information ambiguities, this study suggests using neutrosophic sets as a tactical tool. Three membership functions (called T r , I n , and F i ) that indicate an object's degree of truth, indeterminacy, and false membership constitute the neutrosophic set. It becomes clear that the neutrosophic connectivity index (CIN) is an essential tool for solving practical problems, especially those involving traffic network flow. To capture uncertainties, neutrosophic graphs are used to represent knowledge at different membership levels. Two types of C I N s , mean CIN and CIN, are investigated within the framework of neutrosophic graphs. In the context of neutrosophic diagrams, certain node types-such as neutrosophic neutral nodes, neutrosophic connectivity reducing nodes (NCRN) , and neutrosophic graph connectivity enhancing nodes (NCEN) , play important roles. We concentrate on two types of networks, specifically traffic network flow, to illustrate the real-world uses of CIN. By comparing results, one can see how junction removal affects network connectivity using metrics like Connectivity Indexes (CIN) and Average Connectivity Indexes (ACIN) . A few nodes in particular, designated by ACIN as Non-Critical Removal Nodes ( N C R N s ) , show promise for increases in average connectivity following removal. To fully comprehend traffic network dynamics and make the best decisions, it is crucial to take into account both ACIN and CIN insights. This is because different junctions have different effects on average and overall connectivity metrics.

3.
Heliyon ; 9(11): e21191, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37908713

ABSTRACT

Leafy vegetables are enriched with health-promoting compounds such as carotenoids and polyphenols. Different processing treatments have been shown to affect the amounts of these compounds. In this study, mustard (Brassica campestris) leaves were subjected to various processing treatments, boiling, frying, freezing, sonication, microwaving, and blanching. Carotenoid contents were determined using HPLC-DAD while the total phenolic, flavonoids, anthocyanin, and antioxidant activities were determined using established spectroscopic protocols. It has been found that different processing treatments concentrated the lutein, flavoxanthin, and ß-carotene contents of mustard leaves, while frying has been found to have deleterious effects on these compounds. During boiling the concentration of violaxanthin, antheraxanthin, flavoxanthin, and lutein was significantly increased to 87.4, 29.9, 20.4, and 340.8 µg/g respectively versus control. The total anthocyanin and phenolic contents of mustard leaves were better preserved during frying having values of 6.2 mg/L and 1281.2 mg/100g, respectively, whereas the total flavonoid contents (TFC) in the control sample was 111.8 mg/100g. Among the studied treatments the highest TFC was reported in the blanched samples (108.7 mg/100g), followed by sonication (107.1 mg/100g). During microwave and sonication, the antioxidant potential of the treated samples had significantly increased while in other treatments, it was reduced.

4.
Diagnostics (Basel) ; 13(19)2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37835856

ABSTRACT

Breast cancer is a common cause of female mortality in developing countries. Early detection and treatment are crucial for successful outcomes. Breast cancer develops from breast cells and is considered a leading cause of death in women. This disease is classified into two subtypes: invasive ductal carcinoma (IDC) and ductal carcinoma in situ (DCIS). The advancements in artificial intelligence (AI) and machine learning (ML) techniques have made it possible to develop more accurate and reliable models for diagnosing and treating this disease. From the literature, it is evident that the incorporation of MRI and convolutional neural networks (CNNs) is helpful in breast cancer detection and prevention. In addition, the detection strategies have shown promise in identifying cancerous cells. The CNN Improvements for Breast Cancer Classification (CNNI-BCC) model helps doctors spot breast cancer using a trained deep learning neural network system to categorize breast cancer subtypes. However, they require significant computing power for imaging methods and preprocessing. Therefore, in this research, we proposed an efficient deep learning model that is capable of recognizing breast cancer in computerized mammograms of varying densities. Our research relied on three distinct modules for feature selection: the removal of low-variance features, univariate feature selection, and recursive feature elimination. The craniocaudally and medial-lateral views of mammograms are incorporated. We tested it with a large dataset of 3002 merged pictures gathered from 1501 individuals who had digital mammography performed between February 2007 and May 2015. In this paper, we applied six different categorization models for the diagnosis of breast cancer, including the random forest (RF), decision tree (DT), k-nearest neighbors (KNN), logistic regression (LR), support vector classifier (SVC), and linear support vector classifier (linear SVC). The simulation results prove that our proposed model is highly efficient, as it requires less computational power and is highly accurate.

5.
Heliyon ; 9(6): e16616, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37292279

ABSTRACT

Leafy vegetables are considered to have health-promoting potentials, mainly attributed to bioactive phenolic compounds. The antidiabetic effects of spinach, mustard, and cabbage were studied by feeding their phenolic-rich aqueous extracts to alloxan-induced diabetic mice. The antioxidant, biochemical, histopathological, and hematological indices of the control, diabetic, and treated mice were studied. Phenolic compounds present in the extracts were identified and quantified using HPLC-DAD. Results showed ten, nineteen, and eleven phenolic compounds in spinach, mustard, and cabbage leave aqueous extracts, respectively. The body weight, tissue total glutathione (GSH) contents, fasting blood sugar, liver function tests, renal function tests, and lipid profile of the mice were affected by diabetes and were significantly improved by the extract treatments. Likewise, hematological indices and tissues histological studies also showed recovery from diabetic stress in treated mice. The study's findings highlight that the selected leafy vegetables potentially mitigate diabetic complications. Among the studied vegetables, cabbage extract was comparatively more active in ameliorating diabetic stress.

6.
Sci Rep ; 13(1): 3685, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36878990

ABSTRACT

An incredible eradication of thermal indulgence is required to enhance the flow and heat transfer enhancement in micro/nanofluidic devices. In addition, the rapid transport and instantaneous mixing of colloidal suspensions of metallic particles at nanoscale are exceptionally crucial at ascendency of inertial and surface forces. To address these challenges, the present work is intended to investigate the role of trimetallic nanofluid comprising of three kinds of nano-sized granules (titanium oxide, Silica and Aluminium dioxide) with pure blood through a heated micropump in the presence of inclined magnetic field and axially implemented electric field. To ensure rapid mixing in unidirectional flow, the pump internal surface is lined-up with mimetic motile cilia with slip boundary. The embedded cilia whip in pattern due to dynein molecular motion controlled by time and produce a set of metachronal waves along the pump wall. The shooting technique is executed to compute the numerical solution. In a comparative glance it is revealed that the trimetallic nanofluid exhibits 10% higher heat transfer efficiency as compared to bi-hybrid and mono nanofluids. Moreover, the involvement of electroosmosis results in almost 17% decrease in the heat transfer rate if it values jumps from 1 to 5. The fluid temperature in case of trimetallic nanofluid is higher and thus keeps the heat transfer entropy and the total entropy lower. Furthermore, involvement of thermal radiated and momentum slip significantly contribute in reducing heat losses.

7.
PeerJ Comput Sci ; 8: e1004, 2022.
Article in English | MEDLINE | ID: mdl-35875651

ABSTRACT

Wide availability and large use of social media enable easy and rapid dissemination of news. The extensive spread of engineered news with intentionally false information has been observed over the past few years. Consequently, fake news detection has emerged as an important research area. Fake news detection in the Urdu language spoken by more than 230 million people has not been investigated very well. This study analyzes the use and efficacy of various machine learning classifiers along with a deep learning model to detect fake news in the Urdu language. Logistic regression, support vector machine, random forest (RF), naive Bayes, gradient boosting, and passive aggression have been utilized to this end. The influence of term frequency-inverse document frequency and BoW features has also been investigated. For experiments, a manually collected dataset that contains 900 news articles was used. Results suggest that RF performs better and achieves the highest accuracy of 0.92 for Urdu fake news with BoW features. In comparison with machine learning models, neural networks models long short term memory, and multi-layer perceptron are used. Machine learning models tend to show better performance than deep learning models.

8.
Digit Health ; 8: 20552076221109530, 2022.
Article in English | MEDLINE | ID: mdl-35898288

ABSTRACT

Vaccination for the COVID-19 pandemic has raised serious concerns among the public and various rumours are spread regarding the resulting illness, adverse reactions, and death. Such rumours can damage the campaign against the COVID-19 and should be dealt with accordingly. One prospective solution is to use machine learning-based models to predict the death risk for vaccinated people by utilizing the available data. This study focuses on the prognosis of three significant events including 'not survived', 'recovered', and 'not recovered' based on the adverse events followed by the second dose of the COVID-19 vaccine. Extensive experiments are performed to analyse the efficacy of the proposed Extreme Regression- Voting Classifier model in comparison with machine learning models with Term Frequency-Inverse Document Frequency, Bag of Words, and Global Vectors, and deep learning models like Convolutional Neural Network, Long Short Term Memory, and Bidirectional Long Short Term Memory. Experiments are carried out on the original, as well as, a balanced dataset using Synthetic Minority Oversampling Approach. Results reveal that the proposed voting classifier in combination with TF-IDF outperforms with a 0.85 accuracy score on the SMOTE-balanced dataset. In line with this, the validation of the proposed voting classifier on binary classification shows state-of-the-art results with a 0.98 accuracy.

9.
PLoS One ; 17(6): e0270327, 2022.
Article in English | MEDLINE | ID: mdl-35767542

ABSTRACT

COVID-19 vaccination raised serious concerns among the public and people are mind stuck by various rumors regarding the resulting illness, adverse reactions, and death. Such rumors are dangerous to the campaign against the COVID-19 and should be dealt with accordingly and timely. One prospective solution is to use machine learning-based models to predict the death risk for vaccinated people and clarify people's perceptions regarding death risk. This study focuses on the prediction of the death risks associated with vaccinated people followed by a second dose for two reasons; first to build consensus among people to get the vaccines; second, to reduce the fear regarding vaccines. Given that, this study utilizes the COVID-19 VAERS dataset that records adverse events after COVID-19 vaccination as 'recovered', 'not recovered', and 'survived'. To obtain better prediction results, a novel voting classifier extreme regression-voting classifier (ER-VC) is introduced. ER-VC ensembles extra tree classifier and logistic regression using soft voting criterion. To avoid model overfitting and get better results, two data balancing techniques synthetic minority oversampling (SMOTE) and adaptive synthetic sampling (ADASYN) have been applied. Moreover, three feature extraction techniques term frequency-inverse document frequency (TF-IDF), bag of words (BoW), and global vectors (GloVe) have been used for comparison. Both machine learning and deep learning models are deployed for experiments. Results obtained from extensive experiments reveal that the proposed model in combination with TF-TDF has shown robust results with a 0.85 accuracy when trained on the SMOTE-balanced dataset. In line with this, validation of the proposed voting classifier on binary classification shows state-of-the-art results with a 0.98 accuracy. Results show that machine learning models can predict the death risk with high accuracy and can assist the authors in taking timely measures.


Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19 , Adverse Drug Reaction Reporting Systems , COVID-19/prevention & control , Humans , Politics , Prospective Studies
10.
PeerJ Comput Sci ; 8: e914, 2022.
Article in English | MEDLINE | ID: mdl-35494818

ABSTRACT

The Internet Movie Database (IMDb), being one of the popular online databases for movies and personalities, provides a wide range of movie reviews from millions of users. This provides a diverse and large dataset to analyze users' sentiments about various personalities and movies. Despite being helpful to provide the critique of movies, the reviews on IMDb cannot be read as a whole and requires automated tools to provide insights on the sentiments in such reviews. This study provides the implementation of various machine learning models to measure the polarity of the sentiments presented in user reviews on the IMDb website. For this purpose, the reviews are first preprocessed to remove redundant information and noise, and then various classification models like support vector machines (SVM), Naïve Bayes classifier, random forest, and gradient boosting classifiers are used to predict the sentiment of these reviews. The objective is to find the optimal process and approach to attain the highest accuracy with the best generalization. Various feature engineering approaches such as term frequency-inverse document frequency (TF-IDF), bag of words, global vectors for word representations, and Word2Vec are applied along with the hyperparameter tuning of the classification models to enhance the classification accuracy. Experimental results indicate that the SVM obtains the highest accuracy when used with TF-IDF features and achieves an accuracy of 89.55%. The sentiment classification accuracy of the models is affected due to the contradictions in the user sentiments in the reviews and assigned labels. For tackling this issue, TextBlob is used to assign a sentiment to the dataset containing reviews before it can be used for training. Experimental results on TextBlob assigned sentiments indicate that an accuracy of 92% can be obtained using the proposed model.

11.
J Ambient Intell Humaniz Comput ; 13(1): 535-547, 2022.
Article in English | MEDLINE | ID: mdl-33527000

ABSTRACT

COVID-19 pandemic is widely spreading over the entire world and has established significant community spread. Fostering a prediction system can help prepare the officials to respond properly and quickly. Medical imaging like X-ray and computed tomography (CT) can play an important role in the early prediction of COVID-19 patients that will help the timely treatment of the patients. The x-ray images from COVID-19 patients reveal the pneumonia infections that can be used to identify the patients of COVID-19. This study presents the use of Convolutional Neural Network (CNN) that extracts the features from chest x-ray images for the prediction. Three filters are applied to get the edges from the images that help to get the desired segmented target with the infected area of the x-ray. To cope with the smaller size of the training dataset, Keras' ImageDataGenerator class is used to generate ten thousand augmented images. Classification is performed with two, three, and four classes where the four-class problem has X-ray images from COVID-19, normal people, virus pneumonia, and bacterial pneumonia. Results demonstrate that the proposed CNN model can predict COVID-19 patients with high accuracy. It can help automate screening of the patients for COVID-19 with minimal contact, especially areas where the influx of patients can not be treated by the available medical staff. The performance comparison of the proposed approach with VGG16 and AlexNet shows that classification results for two and four classes are competitive and identical for three-class classification.

12.
PeerJ Comput Sci ; 7: e645, 2021.
Article in English | MEDLINE | ID: mdl-34541306

ABSTRACT

Sarcasm emerges as a common phenomenon across social networking sites because people express their negative thoughts, hatred and opinions using positive vocabulary which makes it a challenging task to detect sarcasm. Although various studies have investigated the sarcasm detection on baseline datasets, this work is the first to detect sarcasm from a multi-domain dataset that is constructed by combining Twitter and News Headlines datasets. This study proposes a hybrid approach where the convolutional neural networks (CNN) are used for feature extraction while the long short-term memory (LSTM) is trained and tested on those features. For performance analysis, several machine learning algorithms such as random forest, support vector classifier, extra tree classifier and decision tree are used. The performance of both the proposed model and machine learning algorithms is analyzed using the term frequency-inverse document frequency, bag of words approach, and global vectors for word representations. Experimental results indicate that the proposed model surpasses the performance of the traditional machine learning algorithms with an accuracy of 91.60%. Several state-of-the-art approaches for sarcasm detection are compared with the proposed model and results suggest that the proposed model outperforms these approaches concerning the precision, recall and F1 scores. The proposed model is accurate, robust, and performs sarcasm detection on a multi-domain dataset.

13.
PeerJ Comput Sci ; 7: e547, 2021.
Article in English | MEDLINE | ID: mdl-34395856

ABSTRACT

Medical diagnosis through the classification of biomedical attributes is one of the exponentially growing fields in bioinformatics. Although a large number of approaches have been presented in the past, wide use and superior performance of the machine learning (ML) methods in medical diagnosis necessitates significant consideration for automatic diagnostic methods. This study proposes a novel approach called concatenated resampling (CR) to increase the efficacy of traditional ML algorithms. The performance is analyzed leveraging four ML approaches like tree-based ensemble approaches, and linear machine learning approach for automatic diagnosis of inter-vertebral pathologies with increased. Besides, undersampling, over-sampling, and proposed CR techniques have been applied to unbalanced training dataset to analyze the impact of these techniques on the accuracy of each of the classification model. Extensive experiments have been conducted to make comparisons among different classification models using several metrics including accuracy, precision, recall, and F 1 score. Comparative analysis has been performed on the experimental results to identify the best performing classifier along with the application of the re-sampling technique. The results show that the extra tree classifier achieves an accuracy of 0.99 in association with the proposed CR technique.

14.
PLoS One ; 16(2): e0245909, 2021.
Article in English | MEDLINE | ID: mdl-33630869

ABSTRACT

The spread of Covid-19 has resulted in worldwide health concerns. Social media is increasingly used to share news and opinions about it. A realistic assessment of the situation is necessary to utilize resources optimally and appropriately. In this research, we perform Covid-19 tweets sentiment analysis using a supervised machine learning approach. Identification of Covid-19 sentiments from tweets would allow informed decisions for better handling the current pandemic situation. The used dataset is extracted from Twitter using IDs as provided by the IEEE data port. Tweets are extracted by an in-house built crawler that uses the Tweepy library. The dataset is cleaned using the preprocessing techniques and sentiments are extracted using the TextBlob library. The contribution of this work is the performance evaluation of various machine learning classifiers using our proposed feature set. This set is formed by concatenating the bag-of-words and the term frequency-inverse document frequency. Tweets are classified as positive, neutral, or negative. Performance of classifiers is evaluated on the accuracy, precision, recall, and F1 score. For completeness, further investigation is made on the dataset using the Long Short-Term Memory (LSTM) architecture of the deep learning model. The results show that Extra Trees Classifiers outperform all other models by achieving a 0.93 accuracy score using our proposed concatenated features set. The LSTM achieves low accuracy as compared to machine learning classifiers. To demonstrate the effectiveness of our proposed feature set, the results are compared with the Vader sentiment analysis technique based on the GloVe feature extraction approach.


Subject(s)
COVID-19 , Social Media , Supervised Machine Learning , Deep Learning , Humans , Natural Language Processing , Pandemics , Public Opinion
15.
PLoS One ; 15(9): e0238480, 2020.
Article in English | MEDLINE | ID: mdl-32960888

ABSTRACT

This study presents the design and implementation of a home automation system that focuses on the use of ordinary electrical appliances for remote control using Raspberry Pi and relay circuits and does not use expensive IP-based devices. Common Lights, Heating, Ventilation, and Air Conditioning (HVAC), fans, and other electronic devices are among the appliances that can be used in this system. A smartphone app is designed that helps the user to design the smart home to his actual home via easy and interactive drag & drop option. The system provides control over the appliances via both the local network and remote access. Data logging over the Microsoft Azure cloud database ensures system recovery in case of gateway failure and data record for lateral use. Periodical notifications also help the user to optimize the usage of home appliances. Moreover, the user can set his preferences and the appliances are auto turned off and on to meet user-specific requirements. Raspberry Pi acting as the server maintains the database of each appliance. HTTP web interface and apache server are used for communication between the android app and raspberry pi. With a 5v relay circuit and micro-processor Raspberry Pi, the proposed system is low-cost, energy-efficient, easy to operate, and affordable for low-income houses.


Subject(s)
Automation/instrumentation , Automation/methods , Air Conditioning , Computers , Electrical Equipment and Supplies , Electricity , Humans , Smartphone , Software
16.
Sensors (Basel) ; 19(21)2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31694339

ABSTRACT

Presently, most deaths are caused by heart disease. To overcome this situation, heartbeat sound analysis is a convenient way to diagnose heart disease. Heartbeat sound classification is still a challenging problem in heart sound segmentation and feature extraction. Dataset-B applied in this study that contains three categories Normal, Murmur and Extra-systole heartbeat sound. In the purposed framework, we remove the noise from the heartbeat sound signal by applying the band filter, After that we fixed the size of the sampling rate of each sound signal. Then we applied down-sampling techniques to get more discriminant features and reduce the dimension of the frame rate. However, it does not affect the results and also decreases the computational power and time. Then we applied a purposed model Recurrent Neural Network (RNN) that is based on Long Short-Term Memory (LSTM), Dropout, Dense and Softmax layer. As a result, the purposed method is more competitive compared to other methods.

17.
Accid Anal Prev ; 42(2): 427-36, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20159063

ABSTRACT

Modeling dynamics of the driver behavior is a complex problem. In this paper a system approach is introduced to model and to analyze the driver behavior related to traffic law violations in the Emirate of Abu Dhabi. This paper demonstrates how the theoretical relationships between different factors can be expressed formally, and how the resulting model can assist in evaluating potential benefits of various policies to control the traffic law violations Using system approach, an integrated dynamic simulation model is developed, and model is tested to simulate the driver behavior for violating traffic laws during 2002-2007 in the Emirate of Abu Dhabi. The dynamic simulation model attempts to address the questions: (1) "what" interventions should be implemented to reduce and eventually control traffic violations which will lead to improving road safety and (2) "how" to justify those interventions will be effective or ineffective to control the violations in different transportation conditions. The simulation results reveal promising capability of applying system approach in the policy evaluation studies.


Subject(s)
Automobile Driving/legislation & jurisprudence , Law Enforcement , Social Control, Formal , Systems Theory , Accidents, Traffic/legislation & jurisprudence , Accidents, Traffic/prevention & control , Automobile Driving/psychology , Humans , Risk-Taking , United Arab Emirates
SELECTION OF CITATIONS
SEARCH DETAIL
...