Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 25(44): 30198-30210, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37807943

ABSTRACT

Currently, the explicitly correlated coupled cluster method is used routinely to generate the multi-dimensional potential energy surfaces (mD-PESs) of van der Waals complexes of small molecular systems relevant for atmospheric, astrophysical and industrial applications. Although very accurate, this method is computationally prohibitive for medium and large molecules containing clusters. For instance, the recent detections of complex organic molecules (COMs) in the interstellar medium, such as benzonitrile, revealed the need to establish an accurate enough electronic structure approach to map the mD-PESs of these species interacting with the surrounding gases. As a benchmark, we have treated the case of the polar molecule benzonitrile interacting with helium, where we use post-Hartree-Fock and symmetry-adapted perturbation theory (SAPT) techniques. Accordingly, we show that MP2 and distinguishable-cluster approximation (DCSD) cannot be used for this purpose, whereas accurate enough PESs may be obtained using the corresponding explicitly correlated versions (MP2-F12 or DCSD-F12) with a reduction in computational costs. Alternatively, computations revealed that SAPT(DFT) is as performant as CCSD(T)-F12/aug-cc-pVTZ, making it the method of choice for mapping the mD-PESs of COMs containing clusters. Therefore, we have used this approach to generate the 3D-PES of the benzonitrile-He complex along the intermonomer Jacobi coordinates. As an application, we have incorporated the analytic form of this PES into quantum dynamical computations to determine the cross sections of the rotational (de-)excitation of benzonitrile colliding with helium at a collision energy of 10 cm-1.

2.
Phys Chem Chem Phys ; 24(47): 28984-28993, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36420625

ABSTRACT

A four-dimensional-potential energy surface (4D-PES) of the atmospherically relevant carbon dioxide-oxygen molecule (CO2-O2) van der Waals complex is mapped using the ab initio explicitly correlated coupled cluster method with single, double, and perturbative triple excitations (UCCSD(T)-F12b), and extrapolation to the complete basis set (CBS) limit using the cc-pVTZ-F12/cc-pVQZ-F12 bases and the l-3 formula. An analytic representation of the 4D-PES was fitted using the method of interpolating moving least squares (IMLS). These calculations predict that the most stable configuration of CO2-O2 complex corresponds to a planar slipped-parallel structure with a binding energy of V ∼ -243 cm-1. Another isomer is found on the PES, corresponding to a non-planar cross-shaped structure, with V ∼ -218 cm-1. The transition structure connecting the two minima is found at V ∼ -211 cm-1. We also performed comparisons with some CO2-X van der Waals complexes. Moreover, we provide a SAPT analysis of this molecular system. Then, we discuss the complexation induced shifts of CO2 and O2. Afterwards, this new 4D-PES is employed to compute the second virial coefficient including temperature dependence. A comparison between quantities obtained in our calculations and those from experiments found close agreement attesting to the high quality of the PES and to the importance of considering a full description of the anisotropic potential for the derivation of thermophysical properties of CO2-O2 mixtures.

3.
J Phys Chem A ; 126(44): 8119-8126, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36301594

ABSTRACT

The electronic structure and spectroscopy of the 29 lowest electronic states of the AuO+ cation were studied using ab initio multiconfigurational methods. These states correlate to the Au+(1S) + O(3P) and Au+(3D) + O(3P) dissociation limits. Their potentials were calculated along the Au-O internuclear distance. There are 23 of these electronic states with potential wells deep enough to allow for long lifetimes of the AuO+ cation in the corresponding states. These bound electronic states were characterized spectroscopically by solving the radial Schrödinger equation for the nuclear motion, to deduce full sets of spectroscopic parameters. The effects of the spin-orbit coupling on the lowest electronic states have been studied by determining the potentials and spectroscopic constants of the seven lowest spin-orbit Ω components. We also carried out precise calculations to determine the adiabatic ionization energy of the AuO molecule, where several corrections of the electronic energies obtained with the standard coupled cluster approach were taken into account. Our results will facilitate the correct assignment of the IR, vis, and UV spectra of the AuO+ cation and the photoelectron spectrum of the neutral AuO diatomic.

SELECTION OF CITATIONS
SEARCH DETAIL
...