Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Appl Opt ; 38(15): 3399-408, 1999 May 20.
Article in English | MEDLINE | ID: mdl-18319938

ABSTRACT

We present both experimental measurements and Monte-Carlo-based simulations of the diffusely backscattered intensity patterns that arise from illuminating a turbid medium with a polarized laser beam. It is rigorously shown that, because of axial symmetry of the system, only seven elements of the effective backscattering Mueller matrix are independent. A new numerical method that allows simultaneous calculation of all 16 elements of the two-dimensional Mueller matrix is used. To validate our method we compared calculations to measurements from a turbid medium that consisted of polystyrene spheres of different sizes and concentrations in deionized water. The experimental and numerical results are in excellent agreement.

2.
Opt Lett ; 23(7): 485-7, 1998 Apr 01.
Article in English | MEDLINE | ID: mdl-18084551

ABSTRACT

We present both experimental and Monte Carlo-based simulation results for the diffusely backscattered intensity patterns that arise from illumination of a turbid medium with a polarized laser beam. A numerical method that allows the calculation of all 16 elements of the two-dimensional Muller matrix is used; moreover, it is shown that only seven matrix elements are independent. To validate our method, we compared our simulations with experimental measurements, using a turbid medium consisting of 2.02-microm -diameter polystyrene spheres suspended in deionized water. By varying the incident polarization and the analyzer optics for the experimental measurements, we obtained the diffuse backscattering Mueller matrix elements. The experimental and the numerical results are in good agreement.

3.
Opt Express ; 3(7): 286-97, 1998 Sep 28.
Article in English | MEDLINE | ID: mdl-19384371

ABSTRACT

We have investigated the possibility of using diffuse reflectance polarimetry to detect changes caused by different molecular compounds and concentrations in tissue-simulating phantoms. The effects of glucose, B-alanine and l-lysine at different concentrations in turbid media have been investigated separately. This approach is based on the effect of optical properties on the polarization state of light. The results show that this method has potential for determining changes in molecular concentrations in highly scattering biological media from polarization images.

SELECTION OF CITATIONS
SEARCH DETAIL