Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
mBio ; 9(6)2018 11 27.
Article in English | MEDLINE | ID: mdl-30482832

ABSTRACT

Intracellular pathogens have varied strategies to breach the endolysosomal barrier so that they can deliver effectors to the host cytosol, access nutrients, replicate in the cytoplasm, and avoid degradation in the lysosome. In the case of Mycobacterium tuberculosis, the bacterium perforates the phagosomal membrane shortly after being taken up by macrophages. Phagosomal damage depends upon the mycobacterial ESX-1 type VII secretion system (T7SS). Sterile insults, such as silica crystals or membranolytic peptides, can also disrupt phagosomal and endolysosomal membranes. Recent work revealed that the host endosomal sorting complex required for transport (ESCRT) machinery rapidly responds to sterile endolysosomal damage and promotes membrane repair. We hypothesized that ESCRTs might also respond to pathogen-induced phagosomal damage and that M. tuberculosis could impair this host response. Indeed, we found that ESCRT-III proteins were recruited to M. tuberculosis phagosomes in an ESX-1-dependent manner. We previously demonstrated that the mycobacterial effectors EsxG/TB9.8 and EsxH/TB10.4, both secreted by the ESX-3 T7SS, can inhibit ESCRT-dependent trafficking of receptors to the lysosome. Here, we additionally show that ESCRT-III recruitment to sites of endolysosomal damage is antagonized by EsxG and EsxH, both within the context of M. tuberculosis infection and sterile injury. Moreover, EsxG and EsxH themselves respond within minutes to membrane damage in a manner that is independent of calcium and ESCRT-III recruitment. Thus, our study reveals that T7SS effectors and ESCRT participate in a series of measures and countermeasures for control of phagosome integrity.IMPORTANCEMycobacterium tuberculosis causes tuberculosis, which kills more people than any other infection. M. tuberculosis grows in macrophages, cells that specialize in engulfing and degrading microorganisms. Like many intracellular pathogens, in order to cause disease, M. tuberculosis damages the membrane-bound compartment (phagosome) in which it is enclosed after macrophage uptake. Recent work showed that when chemicals damage this type of intracellular compartment, cells rapidly detect and repair the damage, using machinery called the endosomal sorting complex required for transport (ESCRT). Therefore, we hypothesized that ESCRT might also respond to pathogen-induced damage. At the same time, our previous work showed that the EsxG-EsxH heterodimer of M. tuberculosis can inhibit ESCRT, raising the possibility that M. tuberculosis impairs this host response. Here, we show that ESCRT is recruited to damaged M. tuberculosis phagosomes and that EsxG-EsxH undermines ESCRT-mediated endomembrane repair. Thus, our studies demonstrate a battle between host and pathogen over endomembrane integrity.


Subject(s)
Antigens, Bacterial/metabolism , Bacterial Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/antagonists & inhibitors , Host-Pathogen Interactions , Mycobacterium tuberculosis/pathogenicity , Type VII Secretion Systems/metabolism , Virulence Factors/metabolism , Animals , Cell Line , Endosomal Sorting Complexes Required for Transport/metabolism , Humans , Mice , Mycobacterium tuberculosis/metabolism , Phagosomes/metabolism , Phagosomes/microbiology , Protein Binding
2.
Nat Microbiol ; 2: 16232, 2016 Dec 05.
Article in English | MEDLINE | ID: mdl-27918526

ABSTRACT

Mycobacterium tuberculosis (Mtb) establishes a persistent infection, despite inducing antigen-specific T-cell responses. Although T cells arrive at the site of infection, they do not provide sterilizing immunity. The molecular basis of how Mtb impairs T-cell function is not clear. Mtb has been reported to block major histocompatibility complex class II (MHC-II) antigen presentation; however, no bacterial effector or host-cell target mediating this effect has been identified. We recently found that Mtb EsxH, which is secreted by the Esx-3 type VII secretion system, directly inhibits the endosomal sorting complex required for transport (ESCRT) machinery. Here, we showed that ESCRT is required for optimal antigen processing; correspondingly, overexpression and loss-of-function studies demonstrated that EsxH inhibited the ability of macrophages and dendritic cells to activate Mtb antigen-specific CD4+ T cells. Compared with the wild-type strain, the esxH-deficient strain induced fivefold more antigen-specific CD4+ T-cell proliferation in the mediastinal lymph nodes of mice. We also found that EsxH undermined the ability of effector CD4+ T cells to recognize infected macrophages and clear Mtb. These results provide a molecular explanation for how Mtb impairs the adaptive immune response.


Subject(s)
Bacterial Proteins/metabolism , CD4-Positive T-Lymphocytes/immunology , Endosomal Sorting Complexes Required for Transport/metabolism , Host-Pathogen Interactions , Immune Evasion , Lymphocyte Activation , Mycobacterium tuberculosis/immunology , Animals , Bacterial Proteins/genetics , Dendritic Cells/immunology , Disease Models, Animal , Gene Expression , Gene Knockout Techniques , Macrophages/immunology , Mice, Inbred C57BL , Tuberculosis/microbiology , Tuberculosis/pathology
3.
mBio ; 5(3): e01073-14, 2014 May 06.
Article in English | MEDLINE | ID: mdl-24803520

ABSTRACT

ABSTRACT The type VII secretion systems are conserved across mycobacterial species and in many Gram-positive bacteria. While the well-characterized Esx-1 pathway is required for the virulence of pathogenic mycobacteria and conjugation in the model organism Mycobacterium smegmatis, Esx-3 contributes to mycobactin-mediated iron acquisition in these bacteria. Here we show that several Esx-3 components are individually required for function under low-iron conditions but that at least one, the membrane-bound protease MycP3 of M. smegmatis, is partially expendable. All of the esx-3 mutants tested, including the ΔmycP3ms mutant, failed to export the native Esx-3 substrates EsxHms and EsxGms to quantifiable levels, as determined by targeted mass spectrometry. Although we were able to restore low-iron growth to the esx-3 mutants by genetic complementation, we found a wide range of complementation levels for protein export. Indeed, minute quantities of extracellular EsxHms and EsxGms were sufficient for iron acquisition under our experimental conditions. The apparent separation of Esx-3 function in iron acquisition from robust EsxGms and EsxHms secretion in the ΔmycP3ms mutant and in some of the complemented esx-3 mutants compels reexamination of the structure-function relationships for type VII secretion systems. IMPORTANCE Mycobacteria have several paralogous type VII secretion systems, Esx-1 through Esx-5. Whereas Esx-1 is required for pathogenic mycobacteria to grow within an infected host, Esx-3 is essential for growth in vitro. We and others have shown that Esx-3 is required for siderophore-mediated iron acquisition. In this work, we identify individual Esx-3 components that contribute to this process. As in the Esx-1 system, most mutations that abolish Esx-3 protein export also disrupt its function. Unexpectedly, however, ultrasensitive quantitation of Esx-3 secretion by multiple-reaction-monitoring mass spectrometry (MRM-MS) revealed that very low levels of export were sufficient for iron acquisition under similar conditions. Although protein export clearly contributes to type VII function, the relationship is not absolute.


Subject(s)
Bacterial Secretion Systems , Iron/metabolism , Mycobacterium/genetics , Mycobacterium/metabolism , Bacterial Secretion Systems/genetics , Gene Order , Genetic Loci , Mycobacterium/growth & development , Oxazoles/metabolism
4.
Bio Protoc ; 4(12)2014 Jun 20.
Article in English | MEDLINE | ID: mdl-29675445

ABSTRACT

Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis. Analysis of proteins secreted by Mtb has been of interest to the field of tuberculosis research since certain secreted proteins interact with the host to promote virulence, while others may be important antigens or serve as biomarkers of infection. Here, we describe a protocol to prepare whole cell extracts (WCE) and short term culture filtrate (CF) from Mtb or the vaccine strain Mycobacterium bovis- bacillus Calmatte- Guérin (BCG) (Mehra et al., 2013). These are both slow growing mycobacteria, but the same basic procedure can easily be adapted to analyze secreted proteins from rapidly growing mycobacteria, such as Mycobacterium smegmatis (Msmeg), a non-pathogenic species commonly used in the laboratory. The fractions obtained can be analyzed by western blotting to examine proteins of interest or by mass spectrometry if antibodies are not available or to examine the entire secretome. Genetic knockout mutants for the gene of interest serve as a negative control. Additionally, levels of a cytosolic protein such as the chaperone GroEL or the pyruvate dehydrogenase E2 component sucB (Rv2215/dlaT) should be assessed in the CF fraction to rule out the possibility that a positive signal in CF is due to bacterial lysis (see Figure 1). By varying the growth conditions of the strain, this in vitro secretion assay can be used to examine conditions that alter the secretome. We are thankful to Magnus Stiegedal for helpful tips on TCA (trichloroacetic acid) precipitation.

5.
Bio Protoc ; 4(13)2014 Jul 05.
Article in English | MEDLINE | ID: mdl-29675446

ABSTRACT

Phagolysosomal trafficking is an important innate defense pathway that clears microbes by delivering them to lysosomes, the degradative compartment of the cell. Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, subverts this host defense mechanism by arresting maturation of the phagosome. The ability of Mtb to arrest its delivery to the lysosome can be demonstrated by the prolonged co-localization of bacteria containing phagosomes/vacuole with early phagosomal markers [such as, Ras-related proteins in the brain 5 (Rab5) and Transferrin receptor (TfR)], and a failure to acquire late phagosomal and lysosomal markers (such as Rab7 and LAMP1) (Deretic and Fratti, 1999, Mehra et al., 2013). Here, a protocol is outlined for infection of macrophages with mycobacterial species like pathogenic Mtb, vaccine strain Mycobacterium bovis- bacillus Calmatte- Guérin (BCG) and rapidly dividing non-pathogenic Mycobacterium smegmatis (Msmeg), followed by indirect-immunofluorescence microscopy to visualize host vacuolar markers. Thereafter, automated quantification of degree of co-localization between mycobacteria and host vacuolar markers like TfR and LAMP1 is done by processing the binary images of bacteria using mathematical tools. This results in quantification of the mean fluorescence intensity (MFI) of these host markers directly around the bacteria/bacterial clusters with increased sensitivity relative to when done manually. By manipulating host or pathogen, this assay can be used to evaluate host or bacterial determinants of intracellular trafficking. The basic method can be applied to studying trafficking of other bacteria or particles like beads, although the kinetics of infection and phagosome maturation will depend upon the phagocytic cargo. The mathematical analysis tools are available in many standard imaging analysis programs. However, any adaption for similar analysis should be confirmed by the individual user with their imaging and analysis platform.

6.
Brain Behav ; 3(6): 701-9, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24363972

ABSTRACT

BACKGROUND: Diabetic neuropathy and idiopathic neuropathy are among the most prevalent neuropathies in human patients. The molecular mechanism underlying pathological changes observed in the affected nerve remains unclear but one candidate molecule, the receptor for advanced glycation end-products (RAGE), has recently gained attention as a potential contributor to neuropathy. Our previous studies revealed that RAGE expression is higher in porcine and murine diabetic nerve, contributing to the inflammatory mechanisms leading to diabetic neuropathy. Here, for the first time, we focused on the expression of RAGE in human peripheral nerve. METHODS: Our study utilized de-identified human sural nerve surplus obtained from 5 non-neuropathic patients (control group), 6 patients with long-term mild-to-moderate diabetic neuropathy (diabetic group) and 5 patients with mild-to-moderate peripheral neuropathy of unknown etiology (idiopathic group). By using immunofluorescent staining and protein immunoblotting we studied the expression and colocalization patterns of RAGE and its ligands: carboxymethyllysine (CML), high mobility group box 1 (HMBG1) and mammalian Diaphanous 1 (mDia1) in control and neuropathic nerves. RESULTS: We found that in a normal, healthy human nerve, RAGE is expressed in almost 30% of all nerve fibers and that number is higher in pathological states such as peripheral neuropathy. We established that the levels of RAGE and its pro-inflammatory ligands, CML and HMBG1, are higher in both idiopathic and diabetic nerve, while the expression of the RAGE cytoplasmic domain-binding partner, mDia1 is similar among control, diabetic, and idiopathic nerve. The highest number of double stained nerve fibers was noted for RAGE and CML: ∼76% (control), ∼91% (idiopathic) and ∼82% (diabetic) respectively. CONCLUSIONS: Our data suggest roles for RAGE and its inflammatory ligands in human peripheral neuropathies and lay the foundation for further, more detailed and clinically oriented investigation involving these proteins and their roles in disorders of the human peripheral nerve.

7.
PLoS Pathog ; 9(10): e1003734, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24204276

ABSTRACT

Mycobacterium tuberculosis (Mtb) disrupts anti-microbial pathways of macrophages, cells that normally kill bacteria. Over 40 years ago, D'Arcy Hart showed that Mtb avoids delivery to lysosomes, but the molecular mechanisms that allow Mtb to elude lysosomal degradation are poorly understood. Specialized secretion systems are often used by bacterial pathogens to translocate effectors that target the host, and Mtb encodes type VII secretion systems (TSSSs) that enable mycobacteria to secrete proteins across their complex cell envelope; however, their cellular targets are unknown. Here, we describe a systematic strategy to identify bacterial virulence factors by looking for interactions between the Mtb secretome and host proteins using a high throughput, high stringency, yeast two-hybrid (Y2H) platform. Using this approach we identified an interaction between EsxH, which is secreted by the Esx-3 TSSS, and human hepatocyte growth factor-regulated tyrosine kinase substrate (Hgs/Hrs), a component of the endosomal sorting complex required for transport (ESCRT). ESCRT has a well-described role in directing proteins destined for lysosomal degradation into intraluminal vesicles (ILVs) of multivesicular bodies (MVBs), ensuring degradation of the sorted cargo upon MVB-lysosome fusion. Here, we show that ESCRT is required to deliver Mtb to the lysosome and to restrict intracellular bacterial growth. Further, EsxH, in complex with EsxG, disrupts ESCRT function and impairs phagosome maturation. Thus, we demonstrate a role for a TSSS and the host ESCRT machinery in one of the central features of tuberculosis pathogenesis.


Subject(s)
Bacterial Proteins/metabolism , Bacterial Secretion Systems , Endosomal Sorting Complexes Required for Transport/metabolism , Mycobacterium tuberculosis/pathogenicity , Phosphoproteins/metabolism , Tuberculosis/metabolism , Animals , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Cell Wall/genetics , Cell Wall/immunology , Cell Wall/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/immunology , Endosomes/genetics , Endosomes/immunology , Endosomes/metabolism , HEK293 Cells , Humans , Intracellular Membranes/immunology , Intracellular Membranes/metabolism , Lysosomes/genetics , Lysosomes/immunology , Lysosomes/metabolism , Lysosomes/microbiology , Membrane Fusion/genetics , Membrane Fusion/immunology , Mice , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/metabolism , Phosphoproteins/genetics , Phosphoproteins/immunology , Tuberculosis/genetics , Tuberculosis/immunology
8.
J Biol Chem ; 288(7): 5056-61, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23233675

ABSTRACT

Mycobacterium tuberculosis resides and replicates within host phagocytes by modulating host microbicidal responses. In addition, it suppresses the production of host protective cytokines to prevent activation of and antigen presentation by M. tuberculosis-infected cells, causing dysregulation of host protective adaptive immune responses. Many cytokines are regulated by microRNAs (miRNAs), a newly discovered class of small noncoding RNAs, which have been implicated in modulating host immune responses in many bacterial and viral diseases. Here, we show that miRNA-99b (miR-99b), an orphan miRNA, plays a key role in the pathogenesis of M. tuberculosis infection. We found that miR-99b expression was highly up-regulated in M. tuberculosis strain H37Rv-infected dendritic cells (DCs) and macrophages. Blockade of miR-99b expression by antagomirs resulted in significantly reduced bacterial growth in DCs. Interestingly, knockdown of miR-99b in DCs significantly up-regulated proinflammatory cytokines such as IL-6, IL-12, and IL-1ß. Furthermore, mRNA and membrane-bound protein data indicated that inhibition of miR-99b augments TNF-α and TNFRSF-4 production. Thus, miR-99b targets TNF-α and TNFRSF-4 receptor genes. Treatment of anti-miR-99b-transfected DCs with anti-TNF-α antibody resulted in increased bacterial burden. Thus, our findings unveil a novel host evasion mechanism adopted by M. tuberculosis via miR-99b, which may open up new avenues for designing miRNA-based vaccines and therapies.


Subject(s)
Dendritic Cells/cytology , Gene Expression Regulation, Bacterial , MicroRNAs/metabolism , Mycobacterium tuberculosis/metabolism , Animals , Cytokines/metabolism , Dendritic Cells/immunology , Dendritic Cells/microbiology , Immune System , Inflammation , Mice , Mice, Inbred C57BL , Mice, Knockout , Phagocytes/metabolism , Signal Transduction
9.
Infect Immun ; 74(9): 5341-51, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16926429

ABSTRACT

The signaling proteome of Entamoeba histolytica is made of transmembrane kinases (TMKs) that are rarely found in unicellular eukaryotes. There are 90 TMK genes reported for E. histolytica, and these have been grouped into nine distinct families based on motifs present on both extracellular and kinase domains. Of these, the B1 family was chosen for further analysis. Genomic sequencing revealed the presence of 28 members belonging to this family. Genes corresponding to the majority of these were truncated and not considered for further analysis. Only five members were full length and contained both extracellular and cytosolic kinase domains. BLAST analysis revealed the presence of homologs of these B1 TMKs in the nonpathogenic Entamoeba dispar. However, the ligand binding domains of the orthologous B1 TMKs of the two species showed considerable divergence, indicating the possibility of a correlation with the pathogenic potential of the organism. Only two of the five full-length copies (B1.I.1 and B1.I.2) were expressed in E. histolytica under the culture conditions used. Antisera generated against the extracellular domain of B1.I.1 stained the cell surface, particularly the areas of contact between the trophozoites. Staining was also seen in the frontal and posterior regions of the motile amoeba. An amoebic cell line expressing a truncated version of the B1.I.1 that lacked the kinase domain was generated. Inducible expression of the truncated TMK resulted in a decrease in cellular proliferation and an increase in sensitivity to serum starvation. Our data indicate that the B1.I class of TMKs is involved in parasite proliferation.


Subject(s)
Entamoeba histolytica/enzymology , Entamoeba histolytica/genetics , Membrane Proteins/metabolism , Phosphotransferases/metabolism , Protozoan Proteins/metabolism , Animals , Cell Line , Computational Biology , Gene Expression , Genes, Protozoan , Membrane Proteins/analysis , Membrane Proteins/chemistry , Phenotype , Phosphotransferases/analysis , Phosphotransferases/chemistry , Protein Structure, Tertiary , Protozoan Proteins/analysis , Protozoan Proteins/chemistry
10.
Mol Biochem Parasitol ; 126(1): 1-8, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12554078

ABSTRACT

A complex glycoconjugate proteophosphoglycan (PPG) is present on the surface of the pathogenic protozoan parasite Entamoeba histolytica but not in the non-pathogenic Entamoeba dispar. It is thought to be an important molecule involved in pathogenesis. In order to study its biosynthesis, an in vitro cell-free system was developed. The specificity of the system was demonstrated by various criteria including immunoprecipitation by a specific monoclonal antibody. The in vitro synthesized molecule was found to be susceptible to mild acid hydrolysis, digestion by phosphoinositol-specific phospholipase C and nitrous acid deamination, the salient features for a PPG-like molecule. The in vitro product was not synthesized when heat-treated cellular-extract was used in the assay or when the cell extract was prepared from Entamoeba invadens, a species that lacks these glycoconjugates. Analysis of the glycan side chains of the in vitro synthesized product by thin layer chromatography revealed side chains of variable sizes including a fraction greater than six glycan units. The crude membranes used in the cell-free system were further fractionated by sucrose density gradient centrifugation. The fraction containing the PPG synthesizing activity when used in the assay resulted in a 10-fold increase in specific activity. Development of this cell-free system will facilitate further studies on the nature of intracellular organelles and the pathways that are involved in PPG biosynthesis.


Subject(s)
Entamoeba histolytica/metabolism , Glycopeptides/biosynthesis , Proteoglycans/biosynthesis , Animals , Cell Fractionation , Entamoeba histolytica/pathogenicity , Entamoebiasis/metabolism , Galactose/metabolism , Glycosylphosphatidylinositols/metabolism , Indicators and Reagents , Membrane Glycoproteins/biosynthesis , Phosphates/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...