Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
Add more filters










Publication year range
1.
Biomater Adv ; 162: 213903, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38824828

ABSTRACT

AIM: The aim of the present review is to shed light on the nanotechnological approaches adopted to overcome the shortcomings associated with the delivery of venom peptides which possess inherent anti-cancer properties. BACKGROUND: Venom peptides although have been reported to demonstrate anti-cancer effects, they suffer from several disadvantages such as in vivo instability, off-target adverse effects, limited drug loading and low bioavailability. This review presents a comprehensive compilation of different classes of nanocarriers while underscoring their advantages, disadvantages and potential to carry such peptide molecules for in vivo delivery. It also discusses various nanotechnological aspects such as methods of fabrication, analytical tools to assess these nanoparticulate formulations, modulation of nanocarrier polymer properties to enhance loading capacity, stability and improve their suitability to carry toxic peptide drugs. CONCLUSION: Nanotechnological approaches bear great potential in delivering venom peptide-based molecules as anticancer agents by enhancing their bioavailability, stability, efficacy as well as offering a spatiotemporal delivery approach. However, the challenges associated with toxicity and biocompatibility of nanocarriers must be duly addressed. PERSPECTIVES: The everlasting quest for new breakthroughs for safer delivery of venom peptides in human subjects is fuelled by unmet clinical needs in the current landscape of chemotherapy. In addition, exhaustive efforts are required in obtaining and purifying the venom peptides followed by designing and optimizing scale up technologies.

2.
Nanomedicine (Lond) ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700294

ABSTRACT

Aim: To investigate the pemetrexed encapsulated polymeric mixed micelles (PMMs) against breast cancer treatment. Methods: We meticulously optimized the formulation and conducted extensive characterizations, including photon correlation spectroscopy for micellization, advanced analytical techniques and in vitro cell line assessments. Results: The PMM exhibited favorable characteristics, with a spherical morphology, hydrodynamic particle size of 19.58 ± 0.89 nm, polydispersity index of 0.245 ± 0.1, and a surface charge of -9.70 ± 0.61 mV. Encapsulation efficiency and drug payload reached 96.16 ± 0.37% and 4.5 ± 0.32%, respectively. Cytotoxicity analysis indicated superior efficacy of the PMM over the drug solution. Conclusion: The PMM formulation exhibited controlled release of the drug, and demonstrated enhanced cytotoxicity against breast cancer cells, highlighting its therapeutic promise.

3.
Adv Biol (Weinh) ; 8(6): e2300487, 2024 06.
Article in English | MEDLINE | ID: mdl-38581078

ABSTRACT

Various cancer models have been developed to aid the understanding of the underlying mechanisms of tumor development and evaluate the effectiveness of various anticancer drugs in preclinical studies. These models accurately reproduce the critical stages of tumor initiation and development to mimic the tumor microenvironment better. Using these models for target validation, tumor response evaluation, resistance modeling, and toxicity comprehension can significantly enhance the drug development process. Herein, various in vivo or animal models are presented, typically consisting of several mice and in vitro models ranging in complexity from transwell models to spheroids and CRISPR-Cas9 technologies. While in vitro models have been used for decades and dominate the early stages of drug development, they are still limited primary to simplistic tests based on testing on a single cell type cultivated in Petri dishes. Recent advancements in developing new cancer therapies necessitate the generation of complicated animal models that accurately mimic the tumor's complexity and microenvironment. Mice make effective tumor models as they are affordable, have a short reproductive cycle, exhibit rapid tumor growth, and are simple to manipulate genetically. Human cancer mouse models are crucial to understanding the neoplastic process and basic and clinical research improvements. The following review summarizes different in vitro and in vivo metastasis models, their advantages and disadvantages, and their ability to serve as a model for cancer research.


Subject(s)
Neoplasms , Animals , Humans , Neoplasms/pathology , Neoplasms/genetics , Neoplasms/drug therapy , Neoplasms/therapy , Mice , Tumor Microenvironment , Disease Models, Animal , Disease Progression , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
4.
Int J Pharm ; 657: 124109, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38626846

ABSTRACT

Breast cancer continues to pose a substantial global health challenge, emphasizing the critical need for the advancement of novel therapeutic approaches. Key players in the regulation of apoptosis, a fundamental process in cell death, are the B-cell lymphoma 2 (Bcl-2) family proteins, namely Bcl-2 and Bax. These proteins have garnered attention as highly promising targets for the treatment of breast cancer. Targeting the overexpressed anti-apoptotic Bcl-2 protein in breast cancer, Gefitinib (GEF), an EGFR (Epidermal Growth Factor Receptor) inhibitor, emerges as a potential solution. This study focuses on designing Gefitinib-loaded polymeric mixed micelles (GPMM) using poloxamer 407 and TPGS (D-alpha tocopherol PEG1000 succinate) for breast cancer therapy. In silico analyses unveil strong interactions between GEF- Bcl-2 and TPGS-Pgp-2 receptors, indicating efficacy against breast cancer. Molecular dynamics simulations offer insights into GEF and TPGS interactions within the micelles. Formulation optimization via Design of Experiment ensures particle size and entrapment efficiency within acceptable ranges. Characterization tools such as zeta sizer, ATR-FTIR, XRD, TEM, AFM, NMR, TGA, and DSC confirms particle size, structure, functional groups, and thermodynamic events. The optimized micelles exhibit a particle size of 22.34 ± 0.18 nm, PDI of 0.038 ± 0.009, and zeta potential of -0.772 ± 0.12 mV. HPLC determines 95.67 ± 0.34% entrapment efficiency and 1.05 ± 0.12% drug loading capacity. In-vitro studies with MDA-MB-231 cell lines demonstrate enhanced cytotoxicity of GPMM compared to free GEF, suggesting its potential in breast cancer therapy. Cell cycle analysis reveals apoptosis induction through key apoptotic proteins. Western blot results confirm GPMM's ability to trigger apoptosis in MDA-MB-231 cells by activating caspase-3, Bax, Bcl-2, and Parp. In conclusion, these polymeric mixed micelles show promise in selectively targeting cancer cells, warranting future in-vivo studies for optimized clinical application against breast cancer.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Gefitinib , Micelles , Poloxamer , Vitamin E , Humans , Poloxamer/chemistry , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Vitamin E/chemistry , Female , Gefitinib/administration & dosage , Gefitinib/pharmacology , Gefitinib/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Molecular Dynamics Simulation , Cell Line, Tumor , Drug Carriers/chemistry , Computer Simulation , Particle Size , Cell Survival/drug effects , Animals , Proto-Oncogene Proteins c-bcl-2/metabolism , Polyethylene Glycols/chemistry , Drug Liberation , Apoptosis/drug effects
5.
Nanomedicine (Lond) ; 19(11): 947-964, 2024.
Article in English | MEDLINE | ID: mdl-38483291

ABSTRACT

Aim: This study aims to explore potential of transniosomes, a hybrid vesicular system, as ocular drug-delivery vehicle. Materials & methods: Thin-film hydration technique was used to fabricate brinzolamide-loaded transniosomes (BRZ-TN) and optimized using Box-Behnken design, further exhaustively characterized for physicochemical evaluations, deformability, drug release, permeation and preclinical evaluations for antiglaucoma activity. Results: The BRZ-TN showed ultradeformability (deformability index: 5.71), exhibiting sustained drug release without irritation (irritancy score: 0) and high permeability compared with the marketed formulation or free drug suspension. The extensive in vivo investigations affirmed effective targeted delivery of transniosomes, with brinzolamide reducing intraocular pressure potentially. Conclusion: Our findings anticipated that BRZ-TN is a promising therapeutic nanocarrier for effectively delivering cargo to targeted sites by crossing corneal barriers.


[Box: see text].


Subject(s)
Cornea , Glaucoma , Liposomes , Permeability , Sulfonamides , Thiazines , Cornea/metabolism , Cornea/drug effects , Animals , Sulfonamides/chemistry , Sulfonamides/pharmacology , Glaucoma/drug therapy , Liposomes/chemistry , Thiazines/chemistry , Thiazines/pharmacology , Drug Liberation , Humans , Intraocular Pressure/drug effects , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrase Inhibitors/pharmacology , Drug Carriers/chemistry , Rabbits , Drug Delivery Systems , Male
6.
AAPS PharmSciTech ; 25(3): 52, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429601

ABSTRACT

As a major public health issue, colorectal cancer causes 9.4% of total cancer-related deaths and comprises 10% of new cancer diagnoses worldwide. In the year 2023, an estimated 153,020 people are expected to receive an identification of colorectal cancer (CRC), resulting in roughly 52,550 fatalities anticipated as a result of this illness. Among those impacted, approximately 19,550 cases and 3750 deaths are projected to occur in individuals under the age of 50. Irinotecan (IRN) is a compound derived from the chemical structure of camptothecin, a compound known for its action in inhibiting DNA topoisomerase I. It is employed in the treatment strategy for CRC therapies. Comprehensive in vivo and in vitro studies have robustly substantiated the anticancer efficacy of these compounds against colon cancer cell lines. Blending irinotecan in conjunction with other therapeutic cancer agents such as oxaliplatin, imiquimod, and 5 fluorouracil enhanced cytotoxicity and improved chemotherapeutic efficacy. Nevertheless, it is linked to certain serious complications and side effects. Utilizing nano-formulated prodrugs within "all-in-one" carrier-free self-assemblies presents an effective method to modify the pharmacokinetics and safety portfolio of cytotoxic chemotherapeutics. This review focuses on elucidating the mechanism of action, exploring synergistic effects, and innovating novel delivery approaches to enhance the therapeutic efficacy of irinotecan.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Colonic Neoplasms , Humans , Irinotecan/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Colonic Neoplasms/drug therapy , Camptothecin/pharmacology , Camptothecin/therapeutic use , Fluorouracil/pharmacology
7.
J Biomol Struct Dyn ; : 1-19, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38356135

ABSTRACT

Cytochrome P450 1B1, a tumor-specific overexpressed enzyme, significantly impairs the pharmacokinetics of several commonly used anticancer drugs including docetaxel, paclitaxel and cisplatin, leading to the problem of resistance to these drugs. Currently, there is no CYP1B1 inhibition-based adjuvant therapy available to treat this resistance problem. Hence, in the current study, exhaustive in-silico studies including scaffold hopping followed by molecular docking, three-dimensional quantitative structure-activity relationships (3D-QSAR), molecular dynamics and free energy perturbation studies were carried out to identify potent and selective CYP1B1 inhibitors. Initially, scaffold hopping analysis was performed against a well-reported potent and selective CYP1B1 inhibitor (i.e. compound 3n). A total of 200 scaffolds were identified along with their shape and field similarity scores. The top three scaffolds were further selected on the basis of these scores and their synthesis feasibility to design some potent and selective CYP1B1 inhibitors using the aforementioned in-silico techniques. Designed molecules were further synthesized to evaluate their CYP1B1 inhibitory activity and docetaxel resistance reversal potential against CYP1B1 overexpressed drug resistance MCF-7 cell line. In-vitro results indicated that compounds 2a, 2c and 2d manifested IC50 values for CYP1B1 ranging from 0.075, 0.092 to 0.088 µM with at least 10-fold selectivity. At low micromolar concentrations, compounds 1e, 1f, 2a and 2d exhibited promising cytotoxic effects in the docetaxel-resistant CYP1B1 overexpressed MCF-7 cell line. In particular, compound 2a is most effective in reversing the resistance with IC50 of 29.0 ± 3.6 µM. All of these discoveries could pave the way for the development of adjuvant therapy capable of overcoming CYP1B1-mediated resistance.Communicated by Ramaswamy H. Sarma.

8.
J Biomol Struct Dyn ; : 1-30, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38299571

ABSTRACT

Study aimed to design and development of a supramolecular formulation of sulpiride (SUL) to enhance its solubility, dissolution and permeability by targeting a novel GlyT1 inhibition mechanism. SUL is commonly used to treat gastric and duodenal ulcers, migraine, anti-emetic, anti-depressive and anti-dyspeptic conditions. Additionally, Naringin (NARI) was incorporated as a co-former to enhance the drug's intestinal permeability by targeting P-glycoprotein (P-gp) efflux inhibition. NARI, a flavonoid has diverse biological activities, including anti-apoptotic, anti-oxidant, and anti-inflammatory properties. This study aims to design and develop a supramolecular formulation of SUL with NARI to enhance its solubility, dissolution, and permeability by targeting a novel GlyT1 inhibition mechanism, extensive experimental characterization was performed using solid-state experimental techniques in conjunction with a computational approach. This approach included quantum mechanics-based molecular dynamics (MD) simulation and density functional theory (DFT) studies to investigate intermolecular interactions, phase transformation and various electronic structure-based properties. The findings of the miscibility study, radial distribution function (RDF) analysis, quantitative simulations of hydrogen/π-π bond interactions and geometry optimization aided in comprehending the coamorphization aspects of SUL-NARI Supramolecular systems. Molecular docking and MD simulation were performed for detailed binding affinity assessment and target validation. The solubility, dissolution and ex-vivo permeability studies demonstrated significant improvements with 31.88-fold, 9.13-fold and 1.83-fold increments, respectively. Furthermore, biological assessments revealed superior neuroprotective effects in the SUL-NARI coamorphous system compared to pure SUL. In conclusion, this study highlights the advantages of a drug-nutraceutical supramolecular formulation for improving the solubility and permeability of SUL, targeting novel schizophrenia treatment approaches through combined computational and experimental analyses.Communicated by Ramaswamy H. Sarma.

9.
Ther Deliv ; 15(4): 279-303, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38374774

ABSTRACT

Breast cancer (BC) is a heterogeneous disease with various morphological features, clinicopathological conditions and responses to different therapeutic options, which is responsible for high mortality and morbidity in women. The heterogeneity of BC necessitates new strategies for diagnosis and treatment, which is possible only by cautious harmonization of the advanced nanomaterials. Recent developments in vesicular nanocarrier therapy indicate a paradigm shift in breast cancer treatment by providing an integrated approach to address current issues. This review provides a detailed classification of various nanovesicles in the treatment of BC with a special emphasis on recent advances, challenges in translating nanomaterials and future potentials.


Subject(s)
Breast Neoplasms , Nanoparticles , Nanostructures , Female , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Drug Carriers
10.
Drug Discov Today ; 29(3): 103913, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38340952

ABSTRACT

The pharmaceutical industry is grappling with a pressing crisis in drug development characterized by soaring R&D costs, setbacks in blockbuster drug development due to poor aqueous solubility, and patent-related limitations on newly approved molecules. To combat these challenges, diverse strategies have emerged to enhance the solubility and dissolution rates of Biopharmaceutics Classification System (BCS) II and IV drug molecules. Enter drug nanocrystals, a revolutionary nanotechnology-driven, carrier-free colloidal drug delivery system. This review provides a comprehensive insight into nanocrystal strategies, stabilizer selection criteria, preparation methods, advanced characterization techniques, the evolving nanocrystal technological landscape, current market options, and exciting clinical prospects for reshaping the future of pharmaceuticals.


Subject(s)
Nanoparticles , Pharmaceutical Preparations/chemistry , Nanoparticles/chemistry , Drug Delivery Systems , Biopharmaceutics , Nanotechnology , Solubility , Biological Availability
11.
ACS Appl Bio Mater ; 7(2): 1028-1040, 2024 02 19.
Article in English | MEDLINE | ID: mdl-38275087

ABSTRACT

The wound curation dressing material should own explicit elements to aggrandize wound cessation. The cryogel of poly(vinyl alcohol) (PVA) and hyaluronic acid (HA) is deemed to promote the angiogenesis, production of extracellular matrix components, granulation, and epithelialization. The research aims to tailor and evaluate the composite PVA/HA cryogel ingrained ferulic acid-loaded nanoemulsion patch labeled as PH-FemuFrost to improve the therapeutic properties and mechanical strength of the patches. The PH-FemuFrost exhibited a water uptake capacity of 268 ± 15.07%, porosity of 70.52 ± 7.4%, and 48.62 ± 2.2% in vitro degradation. The texture analysis revealed the improved mechanical properties of PH-FemuFrost in terms of burst strength and stiffness. The PH-FemuFrost exhibited in vitro antioxidant and antimicrobial activity against Staphylococcus aureus and Candida albicans species. The wound healing efficiency of PH-FemuFrost patches was significantly increased than blank PVA-HA patches. The groups treated with PH-FemuFrost exhibited a dense network of collagen type 1 in comparison to negative and PVA-HA groups. The normal skin and healed skin exhibited parallel arrangement of type I collagen fibers toward the skin. The levels of inflammatory mediators such as IL-6 (p value < 0.0001), IL-22 (p value 0.0098), and TNF-α levels (p value < 0.0001) of PH-FemuFrost is significantly reduced compared to the negative group.


Subject(s)
Hyaluronic Acid , Polyvinyl Alcohol , Hyaluronic Acid/pharmacology , Antioxidants/pharmacology , Cryogels , Anti-Bacterial Agents , Ethanol , Bandages
12.
J Biomol Struct Dyn ; : 1-18, 2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38247232

ABSTRACT

Cyclodextrin complexes loaded with venetoclax for improved solubility and therapeutic efficacy as repurposed drug. The venetoclax-cyclodextrin inclusion complex was prepared using kneading method. Primarily in-silico molecular docking study was performed to examine the possible interaction between venetoclax and hydroxypropyl-ß-cyclodextrin (HP-ß-CD) and extensively characterized. The in-vitro studies were performed using A-549 lung epithelial cancer cells. The in-vivo pharmaco-kinetic studies was performed on wistar rats. The aqueous solubility of venetoclax was increased upto 3.16 folds, as compared with pure venetoclax with entrapment efficiency (EE%) was determined 95.44 ± 0.3%. In-vitro cytotoxicity studies were carried on A-549 lung epithelial cancer cells, wherein BCL-2 receptors were highly over-expressed and IC 50 values for venetoclax and venetoclax- HP-ß-CD complex was calculated at 24 and 48 hrs in the order of 1.241 µg/ml, 0.68 µg/ml and 0.757719 µg/ml, 0.6125 µg/mL, respectively. The oral bioavailability was increased 4.03 times compared to the pure drug. The venetoclax-HP-ß-CD inclusion complexes showed the increased aqueous solubility with improved anticancer activities.Communicated by Ramaswamy H. Sarma.

13.
Mol Biol Rep ; 51(1): 82, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38183502

ABSTRACT

In today's culture, obesity and overweight are serious issues that have an impact on how quickly diabetes develops and how it causes complications. For the development of more effective therapies, it is crucial to understand the molecular mechanisms underlying the chronic problems of diabetes. The most prominent effects of diabetes are microvascular abnormalities such as retinopathy, nephropathy, and neuropathy, especially diabetes foot ulcers, as well as macrovascular abnormalities such as heart disease and atherosclerosis. MicroRNAs (miRNAs), which are highly conserved endogenous short non-coding RNA molecules, have been implicated in several physiological functions recently, including the earliest stages of the disease. By binding to particular messenger RNAs (mRNAs), which cause mRNA degradation, translation inhibition, or even gene activation, it primarily regulates posttranscriptional gene expression. These molecules exhibit considerable potential as diagnostic biomarkers for disease and are interesting treatment targets. This review will provide an overview of the latest findings on the key functions that miRNAs role in diabetes and its complications, with an emphasis on the various stages of diabetic wound healing.


Subject(s)
Atherosclerosis , Diabetes Mellitus , Diabetic Foot , Heart Diseases , MicroRNAs , Humans , Diabetic Foot/genetics , Diabetic Foot/therapy , Ulcer , MicroRNAs/genetics , RNA, Messenger
14.
Drug Deliv Transl Res ; 14(5): 1277-1300, 2024 May.
Article in English | MEDLINE | ID: mdl-37953430

ABSTRACT

Breast cancer is reported as one of the most prevalent non-cutaneous malignancies in women. Venetoclax (VEN) is an approved BCl-2 inhibitor for the treatment of chronic myeloid leukemia with very limited oral bioavailability and exhibits an enormous impact on breast cancer. In the current investigation, venetoclax-loaded self-nanoemulsifying drug delivery systems (VEN-SNEDDS) were designed and fabricated to improve the aqueous solubility, permeability, and anticancer efficacy of VEN. Various surface-active parameters of the reconstituted SNEDDS were determined to scrutinize the performance of the selected surfactant mixture. Central composite design (CCD) was used to optimize the VEN-SNEDDS. The globule size of reconstituted VEN-SNEDDS was 71.3 ± 2.8 nm with a polydispersity index of 0.113 ± 0.01. VEN-SNEDDS displayed approximately 3-4 fold, 6-7 fold, and 5-6 fold reduced IC50 as compared to free VEN in MDA-MB-231, MCF-7, and T47 D cells, respectively. VEN-SNEDDS showed greater cellular uptake, apoptosis, reactive oxygen species generation, and higher BAX/BCL2 ratio with decreased caspase 3 and 8 and BCL-2 levels in the MDA-MB-231 cells compared to pure VEN. VEN-SNEDDS exhibited approximately fivefold enhancement in Cmax and an improved oral bioavailability compared to VEN suspension in in vivo pharmacokinetic studies.


Subject(s)
Breast Neoplasms , Bridged Bicyclo Compounds, Heterocyclic , Nanoparticles , Sulfonamides , Humans , Female , Emulsions , Drug Delivery Systems , Solubility , Surface-Active Agents , Biological Availability , Breast Neoplasms/drug therapy , Proto-Oncogene Proteins c-bcl-2 , Administration, Oral , Particle Size
15.
Pharm Dev Technol ; 29(1): 1-12, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38015058

ABSTRACT

One of the most prevalent cancers affecting women globally is cervical cancer. Cervical cancer is thought to cause 570 000 new cases annually, and standard treatments can have serious side effects. In this work, the main aim is to design, fabrication, and evaluation of carboplatin loaded chitosan coated liposomal formulation (CCLF-I) for vaginal delivery in the treatment of cervical cancer. The particle size and polydispersity index of the CCLF-1 were observed at 269.33 ± 1.15 and 0.40 ± 0.002 nm, respectively. The in vitro mucin binding studies showed good adhesiveness of CCLF-I as compared to plain liposomes (CPLF-I), which was found at 23.49 and 10.80%, respectively. The ex-vivo percent drug permeation from plain liposomal formulation (CPLF-I) was found to be higher in comparison to chitosan coated liposomal formulation which was 56.33% while in CCLF-I it was observed 47.32% this is due to, higher retainability of delivery system (CCLF-I) on targeted site attained by coating of mucoadhesive polymer on liposomes. Ex vivo tissue retention studies exhibited 24.2% of CCLF-I in comparison to 10.34% from plain drug formulation (CPLF-I). The in vivo vaginal retention studies exhibited 14% of drug retention after 24 h from the novel formulation in comparison to 6% from the plain formulation. The developed CCLF-I formulation would open a new avenue in the cervical treatment.


Subject(s)
Chitosan , Uterine Cervical Neoplasms , Female , Humans , Liposomes , Carboplatin , Research Design , Uterine Cervical Neoplasms/drug therapy , Drug Delivery Systems , Particle Size
16.
Int J Biol Macromol ; 258(Pt 1): 128821, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38110163

ABSTRACT

Our main aim to design and develop a novel 4-carboxy phenyl boronic acid (4-CPBA) conjugated Palbociclib (PALB) loaded pH-sensitive chitosan lipid nanoparticles (PPCL) to enhance the anti-cancer efficacy of the PALB in in-vitro cell line studies by loading into 4-CPBA conjugated chitosan lipid nanoparticles. 4-CPBA was conjugated to chitosan by carbodiimide chemistry and formation of conjugate was confirmed by 1HNMR, ATR-FTIR spectroscopic techniques. Ionic-gelation method was used for the fabrication of PPCL and particles size, PDI, zeta potential were found to be 226.5 ± 4.3 nm, 0.271 ± 0.014 and 5.03 ± 0.42 mV. Presence of pH-sensitive biological macromolecule i.e. chitosan in the carrier system provides pH-sensitivity to PPCL and sustainedly released the drug upto 144 h. The PPCL exhibited approximately 7.2, 6.6, and 5-fold reduction in IC50 values than PALB in MCF-7, MDA-MB-231 and 4T1 cells. Receptor blocking assay concluded that the fabricated nanoparticles were internalized into MCF-7 cells might be through sialic acid-mediated endocytosis. PPCL caused extensive mitochondrial depolarization, enhanced ROS generation, apoptosis (DAPI nuclear staining, acridine orange/ ethidium bromide dual staining), and reduced % cell migration than pure PALB. It was concluded that the hybrid lipid-polymer nanoparticles provides an optimistic approach for the treatment of breast cancer.


Subject(s)
Breast Neoplasms , Chitosan , Nanoparticles , Humans , Female , Breast Neoplasms/drug therapy , Lecithins/chemistry , Chitosan/chemistry , Nanoparticles/chemistry , MCF-7 Cells , Hydrogen-Ion Concentration , Drug Carriers/chemistry , Particle Size
17.
Biomed Chromatogr ; 38(4): e5815, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38128133

ABSTRACT

The current research involved the development and validation of an easy, cost-effective, and sensitive bioanalytical reverse-phase high-performance liquid chromatography method for the assessment of palbociclib (PAL) in rat plasma and kidney, liver, spleen and heart. A response surface methodology-based Box-Behnken design was used to optimize critical chromatographic conditions such as buffer pH, organic phase concentration and flow rate to attain good sensitivity, tailing factor and retention time. The conditions were: pH of buffer, 4.5; organic phase concentration, 40%; Shimpac column with 1.0 ml/min flow rate. The responses were: tailing factor, 1.29 ± 0.03, sensitivity, 366,593 ± 8,592; and retention time, 4.5 ± 0.05 min. The samples were extracted by a protein precipitation method, and absolute recoveries were in the range of 88.99-95.08%. The linearity of the developed method was validated over the range 100-2,000 ng/ml (r2 ≥ 0.994) in all tested matrices. The developed bioanalytical method showed greater accuracy (0.98 and 4.01%) and precision (<4.88%). The method was optimized for the sensitive analysis of the PAL in rat plasma, and the kidney, liver, spleen and heart were effectively applied to pharmacokinetic studies.


Subject(s)
Chromatography, Reverse-Phase , Pyridines , Rats , Animals , Chromatography, High Pressure Liquid/methods , Piperazines/analysis
18.
AAPS PharmSciTech ; 24(8): 258, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38097825

ABSTRACT

Even though chemotherapy stands as a standard option in the therapy of TNBC, problems associated with it such as anemia, bone marrow suppression, immune suppression, toxic effects on healthy cells, and multi-drug resistance (MDR) can compromise their effects. Nanoparticles gained paramount importance in overcoming the limitations of conventional chemotherapy. Among the various options, nanotechnology has appeared as a promising path in preclinical and clinical studies for early diagnosis of primary tumors and metastases and destroying tumor cells. PLGA has been extensively studied amongst various materials used for the preparation of nanocarriers for anticancer drug delivery and adjuvant therapy because of their capability of higher encapsulation, easy surface functionalization, increased stability, protection of drugs from degradation versatility, biocompatibility, and biodegradability. Furthermore, this review also provides an overview of PLGA-based nanoparticles including hybrid nanoparticles such as the inorganic PLGA nanoparticles, lipid-coated PLGA nanoparticles, cell membrane-coated PLGA nanoparticles, hydrogels, exosomes, and nanofibers. The effects of all these systems in various in vitro and in vivo models of TNBC were explained thus pointing PLGA-based NPs as a strategy for the management of TNBC.


Subject(s)
Nanoparticles , Triple Negative Breast Neoplasms , Humans , Polylactic Acid-Polyglycolic Acid Copolymer , Lactic Acid , Polyglycolic Acid , Triple Negative Breast Neoplasms/drug therapy , Drug Carriers , Cell Line, Tumor
19.
Nanomedicine (Lond) ; 18(15): 1005-1023, 2023 06.
Article in English | MEDLINE | ID: mdl-37530043

ABSTRACT

Aim: This investigation aims to repurpose venetoclax using hyaluronic acid-coated venetoclax nanocrystals (HA-VEN-NCs) to target breast cancer. Materials & methods: An antisolvent precipitation method was used to fabricate the nanocrystals and optimize them using central composite design. Hyaluronic acid (HA)-coated and -uncoated nanocrystals were compared in terms of in vitro drug release, cell line studies, CD44-expressing breast tumor cell binding capability and anticancer activity. Results: HA-VEN-NCs and venetoclax nanocrystals (VEN-NCs) showed pH-responsive drug-release behavior, exhibiting sustained release at pH 6.8. Our extensive in vitro cell line investigation showed that HA-VEN-NCs efficiently bind to CD44-expressing breast tumor cells and possess excellent anticancer activity (IC50: 2.00 µg/ml) compared with VEN-NCs. Conclusion: Our findings anticipate that HA-VEN-NCs could serve as valuable nanoplatforms for cancer treatments in the future.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Nanoparticles , Female , Humans , Antineoplastic Agents/chemistry , Breast Neoplasms/pathology , Cell Line, Tumor , Hyaluronan Receptors , Hyaluronic Acid/chemistry , Nanoparticles/chemistry
20.
AAPS PharmSciTech ; 24(6): 157, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37470885

ABSTRACT

Brinzolamide is an effective carbonic anhydrase inhibitor widely used in glaucoma therapy but limits its application due to inadequate aqueous solubility and permeability. The aim of the present research work is the development and characterization of brinzolamide-loaded ultradeformable bilosomes to enhance the corneal permeation of the drug. These ultradeformable bilosomes were prepared by ethanol injection method and evaluated for physicochemical properties, particle size, morphology, drug release, ultra-deformability, corneal permeation, and irritation potential. The optimized formulation exhibited an average particle size of 205.4 ± 2.04 nm with mono-dispersity (0.109 ± 0.002) and showed entrapment efficiency of 75.02 ± 0.017%, deformability index of 3.91, and release the drug in a sustained manner. The brinzolamide-loaded ultradeformable bilosomes released 76.29 ± 3.77% of the drug in 10 h that is 2.25 times higher than the free drug solution. The bilosomes were found non-irritant to eyes with a potential irritancy score of 0 in Hen's egg-chorioallantoic membrane assay. Brinzolamide-loaded ultradeformable bilosomes showed 83.09 ± 5.1% of permeation in 6 h and trans-corneal permeability of 8.78 ± 0.14 cm/h during the ex vivo permeation study. The acquired findings clearly revealed that the brinzolamide-loaded ultradeformable bilosomes show promising output and are useful in glaucoma therapy.


Subject(s)
Carbonic Anhydrase Inhibitors , Glaucoma , Animals , Female , Carbonic Anhydrase Inhibitors/pharmacology , Chickens , Cornea , Glaucoma/drug therapy , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...