Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PNAS Nexus ; 3(3): pgae080, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38505694

ABSTRACT

The ongoing Russian aggression against Ukraine has forced over eight million people to migrate out of Ukraine. Understanding the dynamics of forced migration is essential for policy-making and for delivering humanitarian assistance. Existing work is hindered by a reliance on observational data which is only available well after the fact. In this work, we study the efficacy of a data-driven agent-based framework motivated by social and behavioral theory in predicting outflow of migrants as a result of conflict events during the initial phase of the Ukraine war. We discuss policy use cases for the proposed framework by demonstrating how it can leverage refugee demographic details to answer pressing policy questions. We also show how to incorporate conflict forecast scenarios to predict future conflict-induced migration flows. Detailed future migration estimates across various conflict scenarios can both help to reduce policymaker uncertainty and improve allocation and staging of limited humanitarian resources in crisis settings.

2.
medRxiv ; 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34127979

ABSTRACT

High resolution mobility datasets have become increasingly available in the past few years and have enabled detailed models for infectious disease spread including those for COVID-19. However, there are open questions on how such a mobility data can be used effectively within epidemic models and for which tasks they are best suited. In this paper, we extract a number of graph-based proximity metrics from high resolution cellphone trace data from X-Mode and use it to study COVID-19 epidemic spread in 50 land grant university counties in the US. We present an approach to estimate the effect of mobility on cases by fitting an ODE based model and performing multivariate linear regression to explain the estimated time varying transmissibility. We find that, while mobility plays a significant role, the contribution is heterogeneous across the counties, as exemplified by a subsequent correlation analysis. We subsequently evaluate the metrics’ utility for case surge prediction defined as a supervised classification problem, and show that the learnt model can predict surges with 95% accuracy and 87% F1-score.

3.
PLoS One ; 16(1): e0245058, 2021.
Article in English | MEDLINE | ID: mdl-33411830

ABSTRACT

Genome wide association studies (GWAS) attempt to map genotypes to phenotypes in organisms. This is typically performed by genotyping individuals using microarray or by aligning whole genome sequencing reads to a reference genome. Both approaches require knowledge of a reference genome which hinders their application to organisms with no or incomplete reference genomes. This caveat can be removed by using alignment-free association mapping methods based on k-mers from sequencing reads. Here we present an improved implementation of an alignment free association mapping method. The new implementation is faster and includes additional features to make it more flexible than the original implementation. We have tested our implementation on an E. Coli ampicillin resistance dataset and observe improvement in execution time over the original implementation while maintaining accuracy in results. We also demonstrate that the method can be applied to find sex specific sequences.


Subject(s)
Ampicillin Resistance/genetics , Escherichia coli/genetics , Genome, Bacterial , Phenotype , Algorithms , Female , Genome-Wide Association Study , Humans , Male , Sequence Analysis, DNA , Whole Genome Sequencing
4.
Bio Protoc ; 10(21): e3815, 2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33659468

ABSTRACT

Association mapping is the process of linking phenotypes with genotypes. In genome wide association studies (GWAS), individuals are first genotyped using microarrays or by aligning sequenced reads to reference genomes. However, both these approaches rely on reference genomes which limits their application to organisms with no or incomplete reference genomes. To address this, reference free association mapping methods have been developed. Here we present the protocol of an alignment free method for association studies which is based on counting k-mers in sequenced reads, testing for associations between k-mers and the phenotype of interest, and local assembly of the k-mers of statistical significance. The method can map associations of categorical phenotypes to sequence and structural variations without requiring prior sequencing of reference genomes.

SELECTION OF CITATIONS
SEARCH DETAIL
...