Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Energy Mater ; 6(10): 5498-5507, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37234971

ABSTRACT

Tin selenide (SnSe) has attracted much attention in the field of thermoelectrics since the discovery of the record figure of merit (zT) of 2.6 ± 0.3. While there have been many publications on p-type SnSe, to manufacture efficient SnSe thermoelectric generators, ann-type is also required. Publications on n-type SnSe, however, are limited. This paper reports a pseudo-3D-printing technique to fabricate bulk n-type SnSe elements, by utilizing Bi as a dopant. Various Bi doping levels are investigated and characterized over a wide range of temperatures and through multiple thermal cycles. Stable n-type SnSe elements are then combined with printed p-type SnSe elements to fabricate a fully printed alternating n- and p-type thermoelectric generator, which is shown to produce 145 µW at 774 K.

2.
ACS Appl Mater Interfaces ; 15(19): 23068-23076, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37141177

ABSTRACT

There has been much interest in tin selenide (SnSe) in the thermoelectric community since the discovery of the record zT in the material in 2014. Manufacturing techniques used to produce SnSe are largely energy-intensive (e.g., spark plasma sintering); however, recently, in previous work, SnSe has been shown to be produced via a low embodied energy printing technique, resulting in 3D samples with high zT values (up to 1.7). Due to the additive manufacturing technique, the manufacturing time required was substantial. In this work, 3D samples were printed using the inorganic binder sodium metasilicate and reusable molds. This facilitated a single-step printing process that substantially reduced the manufacturing time. The printed samples were thermally stable through multiple thermal cycles, and a peak zT of 0.751 at 823 K was observed with the optimum binder concentration. A proof-of-concept thermoelectric generator produced the highest power output of any reported printed Se-based TEG to date.

3.
Materials (Basel) ; 16(4)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36837087

ABSTRACT

This work investigated the feasibility of using a miniaturised non-standard tensile specimen to predict the post-necking behaviour of the materials manufactured via a rapid alloy prototyping (RAP) approach. The experimental work focused on the determination of the Lankford coefficients (r-value) of dual-phase 800 (DP800) steel and the digital image correlation (DIC) for some cases, which were used to help calibrate the damage model parameters of DP800 steel. The three-dimensional numerical simulations focused on the influence of the size effect (aspect ratio, AR) on the post-necking behaviour, such as the strain/stress/triaxiality evolutions, fracture angles, and necking mode transitions. The modelling showed that although a good correlation can be found between the predicted and experimentally observed ultimate tensile strength (UTS) and total elongation. The standard tensile specimen with a gauge length of 80 mm exhibited a fracture angle of ∼55°, whereas the smaller miniaturised non-standard specimens with low ARs exhibited fractures perpendicular to the loading direction. This shows that care must be taken when comparing the post-necking behaviour of small-scale tensile tests, such as those completed as a part of a RAP approach, to the post-necking behaviours of standard full-size test specimens. However, the modelling work showed that this behaviour is well represented, demonstrating a transition between the fracture angles of the samples between 2.5 and 5. This provides more confidence in understanding the post-necking behaviour of small-scale tensile tests.

4.
ACS Appl Mater Interfaces ; 12(27): 30643-30651, 2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32525306

ABSTRACT

Graphene exhibits both high electrical conductivity and large elastic modulus, which makes it an ideal material candidate for many electronic devices. At present not much work has been conducted on using graphene to construct thermoelectric devices, particularly due to its high thermal conductivity and lack of bulk fabrication. Films of graphene-based materials, however, and their nanocomposites have been shown to be promising candidates for thermoelectric energy generation. Exploring methods to enhance the thermoelectric performance of graphene and produce bulk samples can significantly widen its application in thermoelectrics. Realization of bulk organic materials in the thermoelectric community is highly desired to develop cheap, Earth-abundant, light, and nontoxic thermoelectric generators. In this context, this work reports a new approach using pressed pellets bars of few-layered graphene (FLG) nanoflakes employed in thermoelectric generators (TEGs). First, FLG nanoflakes were produced by a novel dry physical grinding technique followed by graphene nanoflake liberation using plasma treatment. The resultant material is highly pure with very low defects, possessing 3 to 5-layer stacks as proved by Raman spectroscopy, X-ray diffraction measurement, and scanning electron microscopy. The thermal and electronic properties confirm the anisotropy of the material and hence the varied performance characteristics parallel to and perpendicular to the pressing direction of the pellets. The full thermoelectric properties were characterized both parallel and perpendicular to the pressing direction, and the proof-of-concept thermoelectric generators were fabricated with variable amounts of legs.

5.
Adv Mater ; 30(31): e1801357, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29931697

ABSTRACT

Tin selenide (SnSe) has attracted much attention in the field of thermoelectrics since the discovery of the record figure of merit (ZT) of 2.6 ± 0.3 along the b-axis of the material. The record ZT is attributed to an ultralow thermal conductivity that arises from anharmonicity in bonding. While it is known that nanostructuring offers the prospect of enhanced thermoelectric performance, there have been minimal studies in the literature to date of the thermoelectric performance of thin films of SnSe. In this work, preferentially orientated porous networks of thin film SnSe nanosheets are fabricated using a simple thermal evaporation method, which exhibits an unprecedentedly low thermal conductivity of 0.08 W m-1 K-1 between 375 and 450 K. In addition, the first known example of a working SnSe thermoelectric generator is presented and characterized.

6.
Entropy (Basel) ; 20(7)2018 Jun 22.
Article in English | MEDLINE | ID: mdl-33265578

ABSTRACT

We investigate the effect of alloying with scandium on microstructure, high-temperature phase stability, electron transport, and mechanical properties of the Al2CoCrFeNi, Al0.5CoCrCuFeNi, and AlCoCrCu0.5FeNi high-entropy alloys. Out of the three model alloys, Al2CoCrFeNi adopts a disordered CsCl structure type. Both of the six-component alloys contain a mixture of body-centered cubic (bcc) and face centered cubic (fcc) phases. The comparison between in situ high-temperature powder diffraction data and ex situ data from heat-treated samples highlights the presence of a reversible bcc to fcc transition. The precipitation of a MgZn2-type intermetallic phase along grain boundaries following scandium addition affects all systems differently, but especially enhances the properties of Al2CoCrFeNi. It causes grain refinement; hardness and electrical conductivity increases (up to 20% and 14% respectively) and affects the CsCl-type → fcc equilibrium by moving the transformation to sensibly higher temperatures. The maximum dimensionless thermoelectric figure of merit (ZT) of 0.014 is reached for Al2CoCrFeNi alloyed with 0.3 wt.% Sc at 650 °C.

SELECTION OF CITATIONS
SEARCH DETAIL
...